| 注册
首页|期刊导航|中国电机工程学会电力与能源系统学报(英文版)|Short-term Forecasting of Individual Residential Load Based on Deep Learning and K-means Clustering

Short-term Forecasting of Individual Residential Load Based on Deep Learning and K-means Clustering

Fujia Han Tianjiao Pu Maozhen Li Gareth Taylor

中国电机工程学会电力与能源系统学报(英文版)2021,Vol.7Issue(2):261-269,9.
中国电机工程学会电力与能源系统学报(英文版)2021,Vol.7Issue(2):261-269,9.DOI:10.17775/CSEEJPES.2020.04060

Short-term Forecasting of Individual Residential Load Based on Deep Learning and K-means Clustering

Short-term Forecasting of Individual Residential Load Based on Deep Learning and K-means Clustering

Fujia Han 1Tianjiao Pu 1Maozhen Li 2Gareth Taylor3

作者信息

  • 1. Artificial Intelligence Application Department,China Electric Power Research Institute,Beijing 100192,China
  • 2. Department of Electronic and Computer Engineering,Brunel University London,Uxbridge,UK,UB8 3PH
  • 3. Brunel Institute of Power Systems,Brunel University London,Uxbridge,UK,UB8 3PH
  • 折叠

摘要

关键词

Deep learning/demand side response(DSR)/interactions/k-means clustering/residential load forecasting/similarity

Key words

Deep learning/demand side response(DSR)/interactions/k-means clustering/residential load forecasting/similarity

引用本文复制引用

Fujia Han,Tianjiao Pu,Maozhen Li,Gareth Taylor..Short-term Forecasting of Individual Residential Load Based on Deep Learning and K-means Clustering[J].中国电机工程学会电力与能源系统学报(英文版),2021,7(2):261-269,9.

基金项目

This work was supported by the Science and Technology Program of State Grid Corporation of China(Data Mining Technology of Potential High-Value Industrial Users for Data Operations,No.5700-202055267A-0-0-00). (Data Mining Technology of Potential High-Value Industrial Users for Data Operations,No.5700-202055267A-0-0-00)

中国电机工程学会电力与能源系统学报(英文版)

OACSCDCSTPCDEISCI

2096-0042

访问量0
|
下载量0
段落导航相关论文