| 注册
首页|期刊导航|东南大学学报(英文版)|基于梯度和显著性的无参考模糊图像质量评价方法

基于梯度和显著性的无参考模糊图像质量评价方法

贾惠珍 雷初聪 王同罕 李潭 伍家松 李广 何剑锋 舒华忠

东南大学学报(英文版)2021,Vol.37Issue(2):184-191,8.
东南大学学报(英文版)2021,Vol.37Issue(2):184-191,8.DOI:10.3969/j.issn.1003-7985.2021.02.008

基于梯度和显著性的无参考模糊图像质量评价方法

No-reference blur assessment method based on gradient and saliency

贾惠珍 1雷初聪 1王同罕 1李潭 1伍家松 2李广 1何剑锋 1舒华忠2

作者信息

  • 1. 东华理工大学江西省放射性地学大数据技术工程实验室,南昌330013
  • 2. 东南大学影像科学与技术实验室,南京210096
  • 折叠

摘要

Abstract

To evaluate the quality of blurred images effectively,this study proposes a no-reference blur assessment method based on gradient distortion measurement and salient region maps.First,a Gaussian low-pass filter is used to construct a reference image by blurring a given image.Gradient similarity is included to obtain the gradient distortion measurement map,which can finely reflect the smallest possible changes in textures and details.Second,a saliency model is utilized to calculate image saliency.Specifically,an adaptive method is used to calculate the specific salient threshold of the blurred image,and the blurred image is binarized to yield the salient region map.Block-wise visual saliency serves as the weight to obtain the final image quality.Experimental results based on the image and video engineering database,categorial image quality database,and camera image database demonstrate that the proposed method correlates well with human judgment.Its computational complexity is also relatively low.

关键词

无参考图像质量评价/再模糊效应/梯度相似度/显著性

Key words

no-reference image quality assessment/reblurring effect/gradient similarity/saliency

分类

信息技术与安全科学

引用本文复制引用

贾惠珍,雷初聪,王同罕,李潭,伍家松,李广,何剑锋,舒华忠..基于梯度和显著性的无参考模糊图像质量评价方法[J].东南大学学报(英文版),2021,37(2):184-191,8.

基金项目

he National Natural Science Foundation of China(No.61762004,61762005),the National Key Research and Develop-ment Program (No.2018YFB1702700),the Science and Technology Project Founded by the Education Department of Jiangxi Province,China(No.GJJ200702,GJJ200746),the Open Fund Project of Jiangxi Engi-neering Laboratory on Radioactive Geoscience and Big Data Technology(No.JETRCNGDSS201901,JELRGBDT202001,JELRGBDT202003). (No.61762004,61762005)

东南大学学报(英文版)

1003-7985

访问量0
|
下载量0
段落导航相关论文