量子电子学报2021,Vol.38Issue(4):504-516,13.DOI:10.3969/j.issn.1007-5461.2021.04.013
两量子比特在两个热库中的稳态纠缠和热流
Steady-state entanglement and heat current of two-qubit in two heat baths
摘要
Abstract
Non-equilibrium environment is one of the most common dissipative factors encountered in the application of quantum system. The dynamic evolution and steady-state solutions of two coupled qubits in both equilibrium and non-equilibrium environments are studied systematically. The results show that in the equilibrium bath, enhancing the coupling strength, increasing the energy detuning and raising the temperature of the heat bath are all beneficial to the enhancement of the entanglement. While in the non-equilibrium bath, the entanglement is enhanced (suppressed) with the increasing of the temperature gradient for the low (high) average temperature. In addition, the relationship between the heat current and the energy detuning, the coupling strength and the temperature of bath is also studied. It is found that for the two qubits in two independent heat baths or in two common heat baths, the influence of parameters on the evolution of the system and the heat current is different. By selecting appropriate coupling strength, energy detuning and temperature gradient, the stable heat current between two heat baths can be obtained, so the steady-state entanglement of the system.关键词
量子光学/稳态纠缠/热流/独立热库和共同热库/平衡和非平衡环境Key words
quantum optics/steady-state entanglement/heat current/independent and common heat baths/equilibrium and non-equilibrium environment分类
数理科学引用本文复制引用
王美姣,夏云杰,李英德,曹连振,杨阳,赵加强..两量子比特在两个热库中的稳态纠缠和热流[J].量子电子学报,2021,38(4):504-516,13.基金项目
Foundation item:Supported by the Natural Science Foundation of Shandong Province(山东省自然科学基金,ZR2020KF017) (山东省自然科学基金,ZR2020KF017)