| 注册
首页|期刊导航|数学杂志|多阈值和非独立同分布的在线分位数学习算法

多阈值和非独立同分布的在线分位数学习算法

蒋铭勤

数学杂志2021,Vol.41Issue(4):316-328,13.
数学杂志2021,Vol.41Issue(4):316-328,13.

多阈值和非独立同分布的在线分位数学习算法

ONLINE QUANTILE REGRESSION WITH VARYING THRESHOLDS AND NON-IDENTICAL SAMPLING DISTRIBUTIONS

蒋铭勤1

作者信息

  • 1. 武汉大学数学与统计学院,湖北武汉430072
  • 折叠

摘要

Abstract

In this paper we study the online quantile regression algorithm with varying thresh-olds and non-identical sampling distributions,where at each time a sample is drawn independently from different probability distributions and the threshold values decrease with the iteration pro-cess.The learning rate of the algorithm is obtained under the assumption that the sequence of marginal distribution converges polynomially fast in the dual of a H?lder space.Several numerical simulations are presented to support our results.

关键词

非一致分布/在线学习/分位数回归/再生核希尔伯特空间

Key words

sampling with non-identical distributions/online learning/quantile regression/ε-insensitive pinball loss/reproducing kernel Hilbert spaces

分类

数理科学

引用本文复制引用

蒋铭勤..多阈值和非独立同分布的在线分位数学习算法[J].数学杂志,2021,41(4):316-328,13.

基金项目

Supported by National Natural Science Foundation of China(11671307). (11671307)

数学杂志

OACSTPCD

0255-7797

访问量0
|
下载量0
段落导航相关论文