| 注册
首页|期刊导航|应用数学|半无限规划的增广拉格朗日对偶理论

半无限规划的增广拉格朗日对偶理论

苏珂 王晨 林雨萌

应用数学2021,Vol.34Issue(4):894-900,7.
应用数学2021,Vol.34Issue(4):894-900,7.

半无限规划的增广拉格朗日对偶理论

Duality of Semi-infinite Programming via Augmented Lagrangian

苏珂 1王晨 2林雨萌1

作者信息

  • 1. 河北大学数学与信息科学学院,河北 保定 071002
  • 2. 河北省机器学习与计算智能重点实验室,河北 保定 071002
  • 折叠

摘要

Abstract

In this paper, we mainly study the dual problem of the nonconvex semi-infinite programming problem with inequality constraints. It is well known that there is usually a duality gap in constructing duality problem using the ordinary Lagrangian function. To eliminate the duality gap, we construct an augmented Lagrangian function, then discuss its duality. Under reasonable assumptions, the strong duality theorem between the primal problem and the augmented Lagrangian dual problem holds. Finally, an example is given to verify the presented results.

关键词

半无限规划/非凸性/对偶性/增广拉格朗日函数

Key words

Semi-infinite programming/Nonconvex/Duality/Augmented Lagrangian&nbsp/function

分类

数理科学

引用本文复制引用

苏珂,王晨,林雨萌..半无限规划的增广拉格朗日对偶理论[J].应用数学,2021,34(4):894-900,7.

基金项目

Supported by Post-graduate's Innovation Fund Project of Hebei Universi-ty(hbu2020ss043),Hebei Provience Nature Science Foundation of China(A2018201172) (hbu2020ss043)

应用数学

OA北大核心CSCDCSTPCD

1001-9847

访问量0
|
下载量0
段落导航相关论文