| 注册
首页|期刊导航|物理化学学报|表面限域掺杂提升高比能正极材料稳定性

表面限域掺杂提升高比能正极材料稳定性

张思东 刘园 祁慕尧 曹安民

物理化学学报2021,Vol.37Issue(11):75-87,13.
物理化学学报2021,Vol.37Issue(11):75-87,13.DOI:10.3866/PKU.WHXB202011007

表面限域掺杂提升高比能正极材料稳定性

Localized Surface Doping for Improved Stability of High Energy Cathode Materials

张思东 1刘园 2祁慕尧 1曹安民3

作者信息

  • 1. 中国科学院化学研究所,分子纳米结构与纳米技术院重点实验室,北京分子科学国家中心,北京100190
  • 2. 中国科学院大学,北京100049
  • 3. 郑州大学基础医学院纳米酶医学中心,郑州450001
  • 折叠

摘要

Abstract

Lithium ion batteries(LIBs)have broad applications in a wide variety of a fields pertaining to energy storage devices.In line with the increasing demand in emerging areas such as long-range electric vehicles and smart grids,there is a continuous effort to achieve high energy by maximizing the reversible capacity of electrode materials,particularly cathode materials.However,in recent years,with the continuous enhancement of battery energy density,safety issues have increasingly attracted the attention of researchers,becoming a non-negligible factor in determining whether the electric vehicle industry has a foothold.The key issue in the development of battery systems with high specific energies is the intrinsic instability of the cathode,with the accompanying question of safety.The failure mechanism and stability of high-specific-capacity cathode materials for the next generation of LIBs,including nickel-rich cathodes,high-voltage spinel cathodes,and lithium-rich layered cathodes,have attracted extensive research attention.Systematic studies related to the intrinsic physical and chemical properties of different cathodes are crucial to elucidate the instability mechanisms of positive active materials.Factors that these studies must address include the stability under extended electrochemical cycles with respect to dissolution of metal ions in LiPF6-based electrolytes due to HF corrosion of the electrode;cation mixing due to the similarity in radius between Li+and Ni2+;oxygen evolution when the cathode is charged to a high voltage;the origin of cracks generated during repeated charge/discharge processes arising from the anisotropy of the cell parameters;and electrolyte decomposition when traces of water are present.Regulating the surface nanostructure and bulk crystal lattice of electrode materials is an effective way to meet the demand for cathode materials with high energy density and outstanding stability.Surface modification treatment of positive active materials can slow side reactions and the loss of active material,thereby extending the life of the cathode material and improving the safety of the battery.This review is targeted at the failure mechanisms related to the electrochemical cycle,and a synthetic strategy to ameliorate the properties of cathode surface locations,with the electrochemical performance optimized by accurate surface control.From the perspective of the main stability and safety issues of high-energy cathode materials during the electrochemical cycle,a detailed discussion is presented on the current understanding of the mechanism of performance failure.It is crucial to seek out favorable strategies in response to the failures.Considering the surface structure of the cathode in relation to the stability issue,a newly developed protocol,known as surface-localized doping,which can exist in different states to modify the surface properties of high-energy cathodes,is discussed as a means of ensuring significantly improved stability and safety.Finally,we envision the future challenges and possible research directions related to the stability control of next-generation high-energy cathode materials.

关键词

锂离子电池/高比能正极材料/表面限域掺杂/均匀包覆/稳定性

Key words

Lithium ion battery/High energy cathode materials/Localized surface doping/Uniform coating/Stability

分类

化学化工

引用本文复制引用

张思东,刘园,祁慕尧,曹安民..表面限域掺杂提升高比能正极材料稳定性[J].物理化学学报,2021,37(11):75-87,13.

基金项目

The project was supported by the Key Research Program of Frontier Sciences,CAS(ZDBS-LY-SLH020),the Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-202010),the National Natural Science Foundation of China(22025507,21931012)and the Innovation Team for R&D and industrialization of High Energy Density Si-based Power Batteries(2018607219003).中国科学院前沿科学研究计划(ZDBS-LY-SLH020),北京分子科学国家实验室(BNLMS-CXXM-202010),国家自然科学基金(22025507,21931012)和高能量密度硅基动力电池的研发与产业化创新团队(2018607219003)资助项目 (ZDBS-LY-SLH020)

物理化学学报

OA北大核心CSCD

1000-6818

访问量0
|
下载量0
段落导航相关论文