| 注册
首页|期刊导航|华东师范大学学报(自然科学版)|一类右端不连续的奇摄动二阶半线性微分方程解的稳定性态

一类右端不连续的奇摄动二阶半线性微分方程解的稳定性态

刘乐思 倪明康

华东师范大学学报(自然科学版)Issue(1):1-9,9.
华东师范大学学报(自然科学版)Issue(1):1-9,9.DOI:10.3969/j.issn.1000-5641.2022.01.001

一类右端不连续的奇摄动二阶半线性微分方程解的稳定性态

Stability of the solution to a singularly perturbed semilinear second-order differential equation with discontinuous right-hand side

刘乐思 1倪明康1

作者信息

  • 1. 华东师范大学数学科学学院,上海 200241
  • 折叠

摘要

Abstract

In this paper, a stationary problem for the reaction-diffusion equation with a discontinuous right-hand side is considered. Based on ideas from contrast structure theory, the asymptotic representations for eigenvalues and eigenfunctions are constructed by solving a Sturm-Liouville problem and an estimation of the remainder is obtained. Moreover, a sufficient condition which guarantees the stability of the solution to this task is established.

关键词

奇摄动/渐近逼近/稳定性/反应扩散方程

Key words

singular perturbations/asymptotic approximations/stability/reaction-diffusion equation

分类

数理科学

引用本文复制引用

刘乐思,倪明康..一类右端不连续的奇摄动二阶半线性微分方程解的稳定性态[J].华东师范大学学报(自然科学版),2022,(1):1-9,9.

华东师范大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1000-5641

访问量0
|
下载量0
段落导航相关论文