具有非线性扩散项的多维趋化趋触模型的整体有界性OA北大核心CSTPCD
Global Boundedness to a Multi-dimensional Chemotaxis-Haptotaxis Model with Nonlinear Diffusion
本文主要研究一类带有齐次Neumann边界条件且具有非线性扩散项的趋化趋触模型,在较宽的条件下,证明了系统具有整体有界古典解.推广了XU等(2019)和JIA等(2020)得到的整体有界的古典解的结论.
In this paper, we deal with the chemotaxis-haptotaxis model with homo-geneous Neumann boundary conditions and nonlinear diffusion. It is shown that the corresponding system possesses a classical solution under more general conditions. The result improved the work proposed in XU et al.(2019) and JIA et al.(2020), in which, the classical solutions are established.
闫利君;杨作东
华北科技学院理学院,河北 三河 065201南京师范大学教师教育学院, 江苏 南京210097
数理科学
有界性趋化趋触非线性项
BoundednessChemotaxisHaptotaxisNonlinear diffusion
《应用数学》 2022 (1)
81-86,6
Supported by the Natural Science Foundation of China(11571093),the Funda-mental Research Funds for the Central Universities of China(3142020023,3142020024)and the science and technology support project of Langfang(2020011016)
评论