应用数学2022,Vol.35Issue(1):110-119,10.
一类空间分数阶扩散逆时问题的正则化方法与后验收敛性估计
Regularization Method and A-posteriori Convergence Estimate for a Space-fractional Diffusion Problem Backward in Time
摘要
Abstract
The article researches a space-fractional diffusion problem backward in time. Based on the result of conditional stability, we develop a generalized Tikhonov regularization method to overcome the ill-posedness of this problem, and then obtain the convergence estimates of logarithmic and double logarithmic types for the regularized method by the a-posteriori choice rules of regularization parameter. Some results of numerical simulations verify the convergence and stability for this method.关键词
不适定问题/空间分数阶扩散问题/正则化方法/后验收敛性估计/数值模拟Key words
Ill-posed problem/Space-fractional diffusion problem/Regularization method/A-posteriori convergence estimate/Numerical simulation分类
数理科学引用本文复制引用
张宏武,吕拥..一类空间分数阶扩散逆时问题的正则化方法与后验收敛性估计[J].应用数学,2022,35(1):110-119,10.基金项目
Supported by the NSF of China(11761004)and the Construction Project of First-Class Disciplines in Ningxia Higher Education(NXYLXK2017B09) (11761004)