| 注册
首页|期刊导航|应用数学|一类空间分数阶扩散逆时问题的正则化方法与后验收敛性估计

一类空间分数阶扩散逆时问题的正则化方法与后验收敛性估计

张宏武 吕拥

应用数学2022,Vol.35Issue(1):110-119,10.
应用数学2022,Vol.35Issue(1):110-119,10.

一类空间分数阶扩散逆时问题的正则化方法与后验收敛性估计

Regularization Method and A-posteriori Convergence Estimate for a Space-fractional Diffusion Problem Backward in Time

张宏武 1吕拥1

作者信息

  • 1. 北方民族大学数学与信息科学学院,宁夏 银川 750021
  • 折叠

摘要

Abstract

The article researches a space-fractional diffusion problem backward in time. Based on the result of conditional stability, we develop a generalized Tikhonov regularization method to overcome the ill-posedness of this problem, and then obtain the convergence estimates of logarithmic and double logarithmic types for the regularized method by the a-posteriori choice rules of regularization parameter. Some results of numerical simulations verify the convergence and stability for this method.

关键词

不适定问题/空间分数阶扩散问题/正则化方法/后验收敛性估计/数值模拟

Key words

Ill-posed problem/Space-fractional diffusion problem/Regularization method/A-posteriori convergence estimate/Numerical simulation

分类

数理科学

引用本文复制引用

张宏武,吕拥..一类空间分数阶扩散逆时问题的正则化方法与后验收敛性估计[J].应用数学,2022,35(1):110-119,10.

基金项目

Supported by the NSF of China(11761004)and the Construction Project of First-Class Disciplines in Ningxia Higher Education(NXYLXK2017B09) (11761004)

应用数学

OA北大核心CSTPCD

1001-9847

访问量0
|
下载量0
段落导航相关论文