| 注册
首页|期刊导航|应用数学|带Neumann边界条件的延迟泛函偏微分方程线性θ-方法的稳定性

带Neumann边界条件的延迟泛函偏微分方程线性θ-方法的稳定性

陈永堂 王琦

应用数学2022,Vol.35Issue(1):137-146,10.
应用数学2022,Vol.35Issue(1):137-146,10.

带Neumann边界条件的延迟泛函偏微分方程线性θ-方法的稳定性

Stability of Linear θ-Method for Delay Partial Functional Differential Equations with Neumann Boundary Conditions

陈永堂 1王琦1

作者信息

  • 1. 广东工业大学数学与统计学院,广东广州 510006
  • 折叠

摘要

Abstract

This paper is mainly concerned with the numerical stability of delay partial functional differential equations with Neumann boundary conditions. Firstly, the sufficient condition of asymptotic stability of analytic solutions is obtained. Secondly, the linearθ-method is applied to discretize the above mentioned equation, and the stability of the numerical solutions is discussed for different ranges of parameter θ. Compared with the corresponding equation with Dirichlet boundary conditions, our results are more intuitive and easier to verify. Finally, some numerical examples are presented to illustrate our theoretical results.

关键词

延迟泛函偏微分方程/Neumann边界条件/线性θ-方法/渐近稳定性

Key words

Delay partial functional differential equation/Neumann boundary condition/Linearθ-method/Asymptotic stability

分类

数理科学

引用本文复制引用

陈永堂,王琦..带Neumann边界条件的延迟泛函偏微分方程线性θ-方法的稳定性[J].应用数学,2022,35(1):137-146,10.

基金项目

Supported by the National Natural Science Foundation of China(11201084,61803095)and Natural Science Foundation of Guangdong Province(2017A030313031,18ZK0174) (11201084,61803095)

应用数学

OA北大核心CSTPCD

1001-9847

访问量0
|
下载量0
段落导航相关论文