| 注册
首页|期刊导航|自动化学报(英文版)|Cyber Security Intrusion Detection for Agriculture 4.0: Machine Learning-Based Solutions, Datasets, and Future Directions

Cyber Security Intrusion Detection for Agriculture 4.0: Machine Learning-Based Solutions, Datasets, and Future Directions

Mohamed Amine Ferrag Lei Shu Othmane Friha Xing Yang

自动化学报(英文版)2022,Vol.9Issue(3):407-436,30.
自动化学报(英文版)2022,Vol.9Issue(3):407-436,30.DOI:10.1109/JAS.2021.1004344

Cyber Security Intrusion Detection for Agriculture 4.0: Machine Learning-Based Solutions, Datasets, and Future Directions

Cyber Security Intrusion Detection for Agriculture 4.0: Machine Learning-Based Solutions, Datasets, and Future Directions

Mohamed Amine Ferrag 1Lei Shu 2Othmane Friha 3Xing Yang4

作者信息

  • 1. Department of Computer Science,Guelma University,B.P.401,24000,Algeria
  • 2. College of Artificial Intelligence,Nanjing Agricultural University,Nanjing 210031,China
  • 3. School of Engineering,University of Lincoln,Lincoln LN67TS,UK
  • 4. Networks and Systems Laboratory(LRS),University of Badji Mokhtar-Annaba,B.P.12,Annaba 23000,Algeria
  • 折叠

摘要

关键词

Agriculture 4.0/cyber security/intrusion detection system/machine learning approaches/smart agriculture

Key words

Agriculture 4.0/cyber security/intrusion detection system/machine learning approaches/smart agriculture

引用本文复制引用

Mohamed Amine Ferrag,Lei Shu,Othmane Friha,Xing Yang..Cyber Security Intrusion Detection for Agriculture 4.0: Machine Learning-Based Solutions, Datasets, and Future Directions[J].自动化学报(英文版),2022,9(3):407-436,30.

基金项目

This work was supported in part by the Research Start-Up Fund for Talent Researcher of Nanjing Agricultural University(77H0603)and in part by the National Natural Science Foundation of China(62072248). (77H0603)

自动化学报(英文版)

OACSCDCSTPCDEI

2329-9266

访问量0
|
下载量0
段落导航相关论文