首页|期刊导航|电子器件|基于改进PSO-BP神经网络算法的半导体材料带隙宽度预测

基于改进PSO-BP神经网络算法的半导体材料带隙宽度预测OA北大核心CSTPCD

Prediction of Band Gap Width of Semiconductor Materials Based on Improved PSO-BP Neural Network Algorithm

中文摘要

半导体材料的带隙宽度对其性能有重要影响,准确预测带隙宽度对半导体材料的研究具有重要意义.通过密度泛函理论计算半导体材料带隙宽度通常需要耗费大量的时间且预测精度较低,因此建立了一种基于统计学方法和改进PSO-BP神经网络算法的半导体材料带隙宽度预测模型,用于提高带隙值的预测精度.该模型先通过统计学的方法对半导体材料带隙宽度数据集的特征属性进行分析和选择,而后利用改进的PSO-BP神经网络算法挖掘特征属性与带隙值之间隐含的数学关系.实验结果表明,该预…查看全部>>

肖斌;胡国梁

西南石油大学计算机科学学院,四川 成都610500西南石油大学计算机科学学院,四川 成都610500

信息技术与安全科学

材料带隙宽度材料理论计算半导体材料粒子群优化算法BP神经网络

《电子器件》 2022 (2)

282-286,5

10.3969/j.issn.1005-9490.2022.02.007

评论

您当前未登录!去登录点击加载更多...