概率条件下基于双目标交替优化的知识表示模型OA
A Knowledge Representation Model Based on Bi-Objective Alternate Optimization Under Probability
针对TransD模型参数多和实体两种表示间没有关联的问题,提出一种改进的知识表示模型PTransD.通过减少实体投影数,并对实体进行聚类来减少参数量,同时利用K-L(Kullback-Leibler)散度限制实体投影和对应实体类,使其概率分布相同.在模型训练时,对三元组损失和K-L损失交替优化,从类间距大的实体类中替换实体,提高负例质量.最后,在知识图谱数据集上进行三元组分类和链接预测实验.结果表明,该模型的性能在各项指标上均有明显提高,可以应用…查看全部>>
张欣;王振友
广东工业大学 数学与统计学院,广东 广州 510520广东工业大学 数学与统计学院,广东 广州 510520
信息技术与安全科学
知识图谱表示学习交替优化三元组分类链接预测
《广东工业大学学报》 2022 (4)
24-31,8
广东省基础与应用基础研究基金资助项目(2020B1515310001)
评论