| 注册
首页|期刊导航|东南大学学报(英文版)|基于多头注意力长短期记忆模型的语音情感识别方法

基于多头注意力长短期记忆模型的语音情感识别方法

赵焱 赵力 路成 李溯南 唐传高 连海伦

东南大学学报(英文版)2022,Vol.38Issue(2):103-109,7.
东南大学学报(英文版)2022,Vol.38Issue(2):103-109,7.DOI:10.3969/j.issn.1003-7985.2022.02.001

基于多头注意力长短期记忆模型的语音情感识别方法

Multi-head attention-based long short-term memory model for speech emotion recognition

赵焱 1赵力 1路成 1李溯南 1唐传高 2连海伦1

作者信息

  • 1. 东南大学信息科学与工程学院,南京210096
  • 2. 东南大学生物科学与医学工程学院,南京210096
  • 折叠

摘要

Abstract

To fully make use of information from different representation subspaces,a multi-head attention-based long short-term memory(LSTM)model is proposed in this study for speech emotion recognition(SER).The proposed model uses frame-level features and takes the temporal information of emotion speech as the input of the LSTM layer.Here,a multi-head time-dimension attention(MHTA)layer was employed to linearly project the output of the LSTM layer into different subspaces for the reduced-dimension context vectors.To provide relative vital information from other dimensions,the output of MHTA,the output of feature-dimension attention,and the last time-step output of LSTM were utilized to form multiple context vectors as the input of the fully connected layer.To improve the performance of multiple vectors,feature-dimension attention was employed for the all-time output of the first LSTM layer.The proposed model was evaluated on the eNTERFACE and GEMEP corpora,respectively.The results indicate that the proposed model outperforms LSTM by 14.6%and 10.5%for eNTERFACE and GEMEP,respectively,proving the effectiveness of the proposed model in SER tasks.

关键词

语音情感识别/长短期记忆/多头注意力机制/帧级别特征/自注意力

Key words

speech emotion recognition/long short-term memory(LSTM)/multi-head attention mechanism/frame-level features/self-attention

分类

信息技术与安全科学

引用本文复制引用

赵焱,赵力,路成,李溯南,唐传高,连海伦..基于多头注意力长短期记忆模型的语音情感识别方法[J].东南大学学报(英文版),2022,38(2):103-109,7.

基金项目

The National Natural Science Foundation of China(No.61571106,61633013,61673108,81871444). (No.61571106,61633013,61673108,81871444)

东南大学学报(英文版)

1003-7985

访问量0
|
下载量0
段落导航相关论文