首页|期刊导航|电子学报|非抽取小波边缘学习深度残差网络的单幅图像超分辨率重建

非抽取小波边缘学习深度残差网络的单幅图像超分辨率重建OA北大核心CSTPCD

Single Image Super-Resolution Reconstruction Using Deep Residual Networks with Non-decimated Wavelet Edge Learning

中文摘要

图像超分辨率重建作为一个典型的非适定问题一直受到重视,尽管近年来出现了许多行之有效的卷积神经网络超分辨率重建模型,但如何全面挖掘图像先验信息,用以提高重建图像的细节清晰度仍有待深入研究.本文提出一种基于非抽取Wavelet变换的边缘学习深度残差网络单幅图像超分辨重建模型NDW-EDRN(Non-Decimated Wavelet Edge learning using Deep Residual Networks),在图像经非抽取Wavelet变换后获得多冗余信息、平滑及梯度值较小的低频区域和边缘及梯度值较大的高频区域的基础上,将整体网络框架设计为采用不同结构的CNN(Convolu?tional Neural Networks)模型来对低频子带与高频子带分别进行学习的策略:对低频子带采用稠密跳跃连接的方式整体性学习低频子带间的映射关系;对高频子带采用一种新型的U-net模型,将图像退化过程中所丢失的边缘作为网络的期望输出,通过基于块的跳跃连接来使网络更精细地学习缺失性边缘,从而更加充分、有效地获取图像在退化过程中所丢失的边缘细节信息.大量实验结果表明,该网络模型能够有效提高重建图像的质量,特别在恢复低分辨率图像的边缘信息方面具有一定的优势,在一定程度上弥补了传统CNN网络模型捕捉图像细节信息的不足.

王相海;赵晓阳;王鑫莹;赵克云;宋传鸣

辽宁师范大学地理科学学院,辽宁大连116029辽宁师范大学计算机科学与信息技术学院,辽宁大连116081辽宁师范大学地理科学学院,辽宁大连116029辽宁师范大学计算机科学与信息技术学院,辽宁大连116081辽宁师范大学计算机科学与信息技术学院,辽宁大连116081

信息技术与安全科学

卷积神经网络残差学习非抽取小波变换图像超分辨率重建纹理边缘信息

《电子学报》 2022 (7)

协同多维度相关性和深层特征的高光谱影像变化检测理论与方法研究

1753-1765,13

国家自然科学基金(No.41971388)辽宁省高等学校创新团队支持计划(No.LT2017013)

10.12263/DZXB.20210854

评论