| 注册
首页|期刊导航|中国电机工程学会电力与能源系统学报(英文版)|Active Power Correction Strategies Based on Deep Reinforcement Learning—Part Ⅰ:A Simulation-driven Solution for Robustness

Active Power Correction Strategies Based on Deep Reinforcement Learning—Part Ⅰ:A Simulation-driven Solution for Robustness

Peidong Xu Jiajun Duan Jun Zhang Yangzhou Pei Di Shi Zhiwei Wang Xuzhu Dong Yuanzhang Sun

中国电机工程学会电力与能源系统学报(英文版)2022,Vol.8Issue(4):1122-1133,12.
中国电机工程学会电力与能源系统学报(英文版)2022,Vol.8Issue(4):1122-1133,12.DOI:10.17775/CSEEJPES.2020.07090

Active Power Correction Strategies Based on Deep Reinforcement Learning—Part Ⅰ:A Simulation-driven Solution for Robustness

Active Power Correction Strategies Based on Deep Reinforcement Learning—Part Ⅰ:A Simulation-driven Solution for Robustness

Peidong Xu 1Jiajun Duan 2Jun Zhang 1Yangzhou Pei 1Di Shi 2Zhiwei Wang 2Xuzhu Dong 1Yuanzhang Sun1

作者信息

  • 1. School of Electrical Engineering and Automation,Wuhan University,Wuhan 430072,China
  • 2. GEIRI North America,San Jose,CA 95134,USA
  • 折叠

摘要

关键词

Active power corrective control/deep reinforcement learning/graph attention networks/simulation-driven

Key words

Active power corrective control/deep reinforcement learning/graph attention networks/simulation-driven

引用本文复制引用

Peidong Xu,Jiajun Duan,Jun Zhang,Yangzhou Pei,Di Shi,Zhiwei Wang,Xuzhu Dong,Yuanzhang Sun..Active Power Correction Strategies Based on Deep Reinforcement Learning—Part Ⅰ:A Simulation-driven Solution for Robustness[J].中国电机工程学会电力与能源系统学报(英文版),2022,8(4):1122-1133,12.

基金项目

The work is supported by the National Key R&D Program of China under Grant 2018AAA0101504 and the Science and technology project of SGCC(State Grid Corporation of China):fundamental theory of human-in-the-loop hybrid-augmented intelligence for power grid dispatch and control. (State Grid Corporation of China)

中国电机工程学会电力与能源系统学报(英文版)

OACSCDCSTPCDEISCI

2096-0042

访问量0
|
下载量0
段落导航相关论文