首页|期刊导航|电子学报|基于系统模型的用户评论中非功能需求的自动分类

基于系统模型的用户评论中非功能需求的自动分类OA北大核心CSTPCD

Automatic Classification of Non-Functional Requirements in App User Reviews Based on System Model

中文摘要

移动应用程序中的用户评论是获取用户需求的重要来源.从用户评论中获取的用户需求,不仅可以帮助开发人员维护现有系统,还可以快速、准确地定位新的用户需求.本文主要关注移动应用用户评论中的非功能需求,并基于系统模型、采用机器学习和深度学习算法将其自动分类为行为型需求和表示型需求.在使用机器学习方法分类时,将2种特征提取技术与5种机器学习算法进行组合.在使用深度学习方法分类时,使用了2种基于词嵌入的深度学习算法和1种基于字符嵌入的深度学习算法.从性能和时间消耗2个维度比较了机器学习模型和深度学习模型,结果表明,机器学习模型比深度学习模型表现更好.此外,支持向量机(Support Vector Machine,SVM)与词频-逆文档频率(Term Frequency?Inverse Document Frequency,TF?IDF)组合获得了最好的分类性能,精确率为0.941,召回率为0.990,F1-score为0.965.

李雪莹;王田路;梁鹏;王翀

武汉大学计算机学院,湖北武汉430072武汉大学计算机学院,湖北武汉430072武汉大学计算机学院,湖北武汉430072武汉大学计算机学院,湖北武汉430072

信息技术与安全科学

用户评论系统模型非功能需求自动分类机器学习深度学习

《电子学报》 2022 (9)

面向持续交付的自动化辅助软件体系结构决策方法研究

2079-2089,11

国家重点研发计划(No.2018YFB1402800)国家自然科学基金(No.62172311)

10.12263/DZXB.20210454

评论