| 注册
首页|期刊导航|雷达学报|结合强化学习自适应候选框挑选的SAR目标检测方法

结合强化学习自适应候选框挑选的SAR目标检测方法

杜兰 王梓霖 郭昱辰 杜宇昂 严俊坤

雷达学报2022,Vol.11Issue(5):884-896,13.
雷达学报2022,Vol.11Issue(5):884-896,13.DOI:10.12000/JR22121

结合强化学习自适应候选框挑选的SAR目标检测方法

Adaptive Region Proposal Selection for SAR Target Detection Using Reinforcement Learning

杜兰 1王梓霖 1郭昱辰 2杜宇昂 1严俊坤1

作者信息

  • 1. 西安电子科技大学雷达信号处理国家重点实验室 西安 710071
  • 2. 西安电子科技大学前沿交叉研究院 西安 710071
  • 折叠

摘要

Abstract

Compared with optical images, the background clutter has a greater impact on feature extraction in Synthetic Aperture Radar (SAR) images. Due to the traditional redundant region proposals on the entire feature map, these algorithms generate large quantities of false alarms under the influence of clutter in SAR images, thereby lowering the target detection accuracy. To address this issue, this study proposes a Faster R-CNN model-based SAR target detection method, which uses reinforcement learning to realize adaptive region proposal selection. This method can adaptively locate areas that may contain targets on the feature map using the sequential decision-making characteristic of reinforcement learning and simultaneously adjust the scope of the next search area according to previous search results using distance constraints in reinforcement learning. Thus, this method can reduce the impact of complex background clutter and the computation of reinforcement learning. The experimental results based on the measured data indicate that the proposed method improves the detection performance.

关键词

合成孔径雷达/目标检测/强化学习/Faster/R-CNN算法

Key words

Synthetic Aperture Radar (SAR)/Target detection/Reinforcement learning/Faster R-CNN

分类

信息技术与安全科学

引用本文复制引用

杜兰,王梓霖,郭昱辰,杜宇昂,严俊坤..结合强化学习自适应候选框挑选的SAR目标检测方法 [J].雷达学报,2022,11(5):884-896,13.

基金项目

国家自然科学基金(U21B2039) (U21B2039)

雷达学报

OA北大核心CSCDCSTPCDEI

2095-283X

访问量0
|
下载量0
段落导航相关论文