| 注册
首页|期刊导航|中国电机工程学会电力与能源系统学报(英文版)|Optimal Frequency Regulation Based on Characterizing the Air Conditioning Cluster by Online Deep Learning

Optimal Frequency Regulation Based on Characterizing the Air Conditioning Cluster by Online Deep Learning

Yeyan Xu Liangzhong Yao Siyang Liao Yaping Li Jian Xu Fan Cheng

中国电机工程学会电力与能源系统学报(英文版)2022,Vol.8Issue(5):1373-1387,15.
中国电机工程学会电力与能源系统学报(英文版)2022,Vol.8Issue(5):1373-1387,15.DOI:10.17775/CSEEJPES.2020.05940

Optimal Frequency Regulation Based on Characterizing the Air Conditioning Cluster by Online Deep Learning

Optimal Frequency Regulation Based on Characterizing the Air Conditioning Cluster by Online Deep Learning

Yeyan Xu 1Liangzhong Yao 1Siyang Liao 1Yaping Li 2Jian Xu 1Fan Cheng3

作者信息

  • 1. School of Electrical Engineering and Automation,Wuhan University,Wuhan 430072,China
  • 2. China Electric Power Research Institute,Nanjing 210008,China
  • 3. China Electric Power Research Institute,Beijing 100085,China
  • 折叠

摘要

关键词

Air conditioning/demand response chara-cteristic/online deep learning/optimal frequency regulation/sliding mode control

Key words

Air conditioning/demand response chara-cteristic/online deep learning/optimal frequency regulation/sliding mode control

引用本文复制引用

Yeyan Xu,Liangzhong Yao,Siyang Liao,Yaping Li,Jian Xu,Fan Cheng..Optimal Frequency Regulation Based on Characterizing the Air Conditioning Cluster by Online Deep Learning[J].中国电机工程学会电力与能源系统学报(英文版),2022,8(5):1373-1387,15.

基金项目

This work was supported by State Grid Corporation of China Project Research on Coordinated Technology for Dynamic Demand Response in Frequency Control. ()

中国电机工程学会电力与能源系统学报(英文版)

OACSCDCSTPCDEISCI

2096-0042

访问量0
|
下载量0
段落导航相关论文