| 注册
首页|期刊导航|应用数学|分数阶时滞微分方程的Hyers-Ulam稳定性

分数阶时滞微分方程的Hyers-Ulam稳定性

王雅倩 顾鹏飞 李刚 刘莉

应用数学2023,Vol.36Issue(1):101-108,8.
应用数学2023,Vol.36Issue(1):101-108,8.

分数阶时滞微分方程的Hyers-Ulam稳定性

Hyers-Ulam Stability of Fractional Delay Differential Equations

王雅倩 1顾鹏飞 1李刚 1刘莉1

作者信息

  • 1. 扬州大学数学科学学院,江苏 扬州225002
  • 折叠

摘要

Abstract

This paper is devoted to the Hyers-Ulam stability of the inhomogeneous fractional delay differential equations with order α ∈(0,1).On the basis of the delayed Mittag-Leffler matrix function,we give the explicit solution of the inhomogeneous delay fractional differential equations by using the technique of Laplace transforms.Furthermore,we prove the inhomogeneous delay fractional differential equations satisfy the Hyers-Ulam stability in the finite time interval[0,T].Finally,an example is presented to illustrate our theoretical results.

关键词

时滞/分数阶微分方程/Mittag-Leffler函数/拉普拉斯变换/Hyers-Ulam稳定性

Key words

Delay/Fractional differential equation/Mittag-Leffler function/Laplace transform/Hyers-Ulam stability

分类

数理科学

引用本文复制引用

王雅倩,顾鹏飞,李刚,刘莉..分数阶时滞微分方程的Hyers-Ulam稳定性[J].应用数学,2023,36(1):101-108,8.

基金项目

Supported by the National Natural Science Foundation of China(11871064),the Graduate Research and Innovation Projects of Jiangsu Province(Yangzhou University)(XKYCX20-010) (11871064)

应用数学

1001-9847

访问量2
|
下载量0
段落导航相关论文