物理化学学报2022,Vol.38Issue(12):209-217,9.DOI:10.3866/PKU.WHXB202111030
碳量子点阳离子表面活性剂的多功能性
Versatile Performance of a Cationic Surfactant Derived from Carbon Quantum Dots
摘要
Abstract
Carbon quantum dots(CQDs)have attracted extensive interest due to their strong fluorescence as well as inexpensive and plentiful resources for manufacture.There are numerous published reports on the preparation of CQDs and direct applications based on their photoluminescence.Successive chemical modification of CQDs in an appropriate manner might expand the application scope of CQDs and transform them into practical fine chemicals.The various functional groups on the surface of CQDs allow for efficient chemical modification while imparting them with hydrophilicity.Covalent linking of hydrophobic hydrocarbon chains to CQDs would lead to the formation of novel surfactants.Here,a technique for preparing CQD-based cationic surfactants is depicted in detail.This was rare to be reported according to recent publishes.First,a mixture of ethylenediamine tetraacetic acid and ethylenediamine in the presence of hydrogen peroxide in an aqueous medium was pyrolyzed at 180℃for 60 min.The resulting CQDs are represented as OX-CQDs.Then,the OX-CQDs were subjected to quaternization with 1-chlorododecane for obtaining the cationic surfactant(OX-CQDs-C12H25).The OX-CQDs-C12H25 surfactant effectively decreased the surface tension of water from 72.0 to 26.7 mN·m-1 at the critical micelle concentration of 5.0 mg·mL-1,thus demonstrating superior performance over several new Gemini cationic surfactants.The OX-CQDs-C12H25 surfactant also decreased the contact angles of water considerably.However,when longer alkyl chains such as-C14H29 or-C16H33 were attached to the CQDs,the corresponding surfactant was less effective in decreasing the surface tension of water.Calculations based on the Gibbs absorption isothermal equation revealed that two more-C12H25 chains were bonded with a carbon quantum dot averagely,implying that the as-prepared CQD-cationic surfactant belonged to the category of Gemini surfactants.Quaternization with 1-chlorododecane also led to a notable enhancement in the antibacterial activity for Escherichia coli as compared with that of unmodified CQDs.The antibacterial percentage approached 100%even the solution was diluted to 0.41 mg·mL-1,which was much lower than the critical micelle concentration.The fluorescence quantum yield of OX-CQDs-C12H25 reached 6.44%.Experimental results revealed that hydrogen peroxide played a positive role in improving the surface activity and fluorescence quantum yield of OX-CQDs-C12H25.The surface activity,antibiosis,and fluorescence endowed the versatilities of OX-CQDs-C12H25.This novel,economical technique for synthesizing cationic surfactants eliminates the need for introducing hydrophilic groups.The hydrothermal approach for preparing CQDs satisfies the demand for green chemical synthesis.From this aspect,our technique provides efficient access to synthesizing cationic surfactants.关键词
碳量子点/季铵化/阳离子表面活性剂/表面活性/荧光/抑菌性Key words
Carbon quantum dot/Quaternization/Cationic surfactant/Surface activity/Fluorescence/Antibiosis分类
化学化工引用本文复制引用
杨健,雷辰,刘祥,张建,孙玉蝶,张铖,叶明富,张奎..碳量子点阳离子表面活性剂的多功能性[J].物理化学学报,2022,38(12):209-217,9.基金项目
The project was supported by the National Natural Science Foundation of China(22106005,22004003,21976002).国家自然科学基金(22106005,22004003,21976002)资助项目 (22106005,22004003,21976002)