首页|期刊导航|草业科学|基于卷积神经网络的牧草种子图像识别

基于卷积神经网络的牧草种子图像识别OA北大核心CSTPCD

Convolutional neural network-based image recognition of forage seeds

中文摘要

传统的灰度图像处理方式会降低数据集的复杂性,进而降低模型识别相似种子的准确率.因此,将卷积神经网络中传统的图像灰质化处理方法改进为归一化典型判别分析(nCDA)算法与卷积神经网络(CNN)相结合的方法(CNN-nCDA),该方法基于多光谱仪采集的种子图像信息,以深度学习框架TensorFlow为基础,利用卷积神经网络构建种子识别算法,可区分高相似度牧草种子.结果表明,仅依靠传统灰度图难以区分形态相似的种子(62.11%~72.5%),而采用CNN-nCDA策略对不同类别种子分类的准确率可达100.0%,优于单独使用nCDA(90.0%~100.0%)、线性判别分析(LDA)(97.3%~100.0%)、支持向量机(SVM)(92.4%~97.5%)的准确率.综上所述,多光谱成像技术中的nCDA算法与卷积神经网络相结合技术,具有较高的校准和验证能力,对现场快速筛选种子具有良好的应用前景.

何欣;王雪萌;张涵;宋瑞;田沛鑫;刘萍;毛培胜;贾善刚

中国农业大学草业科学与技术学院,北京100091中国农业大学草业科学与技术学院,北京100091中国农业大学草业科学与技术学院,北京100091中国农业大学草业科学与技术学院,北京100091中国农业大学草业科学与技术学院,北京100091中国农业大学草业科学与技术学院,北京100091中国农业大学草业科学与技术学院,北京100091中国农业大学草业科学与技术学院,北京100091

TensorFlow卷积神经网络多光谱种子识别图像识别牧草种子

《草业科学》 2022 (11)

2338-2349,12

现代农业产业技术体系(CARS-34)中国农业大学基本业务费(2019TC257、2020TC189)

10.11829/j.issn.1001-0629.2022-0504

评论