| 注册
首页|期刊导航|原子能科学技术|Study of Deuteron Separation Energy Based on Bayesian Neural Network Approach

Study of Deuteron Separation Energy Based on Bayesian Neural Network Approach

XING Kang LIANG Yan SUN Xiaojun

原子能科学技术2023,Vol.57Issue(4):721-728,8.
原子能科学技术2023,Vol.57Issue(4):721-728,8.DOI:10.7538/yzk.2022.youxian.0858

Study of Deuteron Separation Energy Based on Bayesian Neural Network Approach

Study of Deuteron Separation Energy Based on Bayesian Neural Network Approach

XING Kang 1LIANG Yan 1SUN Xiaojun1

作者信息

  • 1. College of Physics and Technology,Guangxi Normal University,Guilin 541004,China||Guangxi Key Laboratory of Nuclear Physics and Technology,Guangxi Normal University,Guilin 541004,China
  • 折叠

摘要

关键词

Bayesian neural network/deuteron separation energy/pair and shell effects

Key words

Bayesian neural network/deuteron separation energy/pair and shell effects

分类

数理科学

引用本文复制引用

XING Kang,LIANG Yan,SUN Xiaojun..Study of Deuteron Separation Energy Based on Bayesian Neural Network Approach[J].原子能科学技术,2023,57(4):721-728,8.

基金项目

Supported by National Natural Science Foundation of China(12065003) (12065003)

Central Government Guidance Funds for Local Scientific and Technological Development of China(Guike ZY22096024) (Guike ZY22096024)

Natural Science Foundation of Guangxi(2019GXNSFDA185011) (2019GXNSFDA185011)

Scientific Research and Technology Development Project of Guilin(20210104-2) (20210104-2)

原子能科学技术

OA北大核心CSCDCSTPCD

1000-6931

访问量0
|
下载量0
段落导航相关论文