| 注册
首页|期刊导航|自动化学报(英文版)|Estimating the State of Health for Lithium-ion Batteries:A Particle Swarm Optimization-Assisted Deep Domain Adaptation Approach

Estimating the State of Health for Lithium-ion Batteries:A Particle Swarm Optimization-Assisted Deep Domain Adaptation Approach

Guijun Ma Zidong Wang Weibo Liu Jingzhong Fang Yong Zhang Han Ding Ye Yuan

自动化学报(英文版)2023,Vol.10Issue(7):1530-1543,14.
自动化学报(英文版)2023,Vol.10Issue(7):1530-1543,14.DOI:10.1109/JAS.2023.123531

Estimating the State of Health for Lithium-ion Batteries:A Particle Swarm Optimization-Assisted Deep Domain Adaptation Approach

Estimating the State of Health for Lithium-ion Batteries:A Particle Swarm Optimization-Assisted Deep Domain Adaptation Approach

Guijun Ma 1Zidong Wang 2Weibo Liu 3Jingzhong Fang 3Yong Zhang 4Han Ding 1Ye Yuan5

作者信息

  • 1. School of Mechanical Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China
  • 2. College of Electrical Engineering and Automation,Shandong University of Science and Technology,Qingdao 266590,China||Department of Computer Science,Brunel University London,Uxbridge,Middlesex,UB8 3PH,United Kingdom
  • 3. Department of Computer Science,Brunel University London,Uxbridge,Middlesex,UB8 3PH,United Kingdom
  • 4. School of Information Science and Engineering,Wuhan University of Science and Technology,Wuhan 430081,China
  • 5. School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074,China
  • 折叠

摘要

关键词

Deep transfer learning/domain adaptation/hyper-parameter selection/lithium-ion batteries(LIBs)/particle swarm opti-mization/state of health estimation(SOH)

Key words

Deep transfer learning/domain adaptation/hyper-parameter selection/lithium-ion batteries(LIBs)/particle swarm opti-mization/state of health estimation(SOH)

引用本文复制引用

Guijun Ma,Zidong Wang,Weibo Liu,Jingzhong Fang,Yong Zhang,Han Ding,Ye Yuan..Estimating the State of Health for Lithium-ion Batteries:A Particle Swarm Optimization-Assisted Deep Domain Adaptation Approach[J].自动化学报(英文版),2023,10(7):1530-1543,14.

基金项目

This work was supported in part by the National Natural Sci-ence Foundation of China(92167201,62273264,61933007). (92167201,62273264,61933007)

自动化学报(英文版)

OACSCDCSTPCDEI

2329-9266

访问量0
|
下载量0
段落导航相关论文