电力系统自动化2023,Vol.47Issue(13):56-68,13.DOI:10.7500/AEPS20220929011
基于贝叶斯方法与可解释机器学习的负荷特性分析与预测
Characteristic Analysis and Load Forecasting Based on Bayesian Method and Interpretable Machine Learning
摘要
关键词
短期负荷预测/负荷特性分析/贝叶斯时序模型/可解释机器学习/集成学习Key words
short-term load forecasting/load characteristic analysis/Bayesian time series model/interpretable machine learning/ensemble learning引用本文复制引用
郑心仕,梁寿愚,苏晓,王浩,程国鑫..基于贝叶斯方法与可解释机器学习的负荷特性分析与预测[J].电力系统自动化,2023,47(13):56-68,13.基金项目
国家重点研发计划资助项目(2022YFB2403500).This work is supported by National Key R&D Program of China(No.2022YFB2403500). (2022YFB2403500)