动态自适应特征融合的MFOPA跟踪器
MFOPA Tracker with Dynamic Adaptive Feature Fusion
摘要
关键词
目标跟踪/群体智能算法/改进飞蛾扑火算法/特征融合/余弦相似度/高斯初始化Key words
target tracking/swarm intelligence algorithm/improved moth-flame optimization/feature fusion/cosine similarity/Gaussian initialization分类
计算机与自动化引用本文复制引用
黄鹤,李文龙,吴琨,杨澜,王会峰,王萍..动态自适应特征融合的MFOPA跟踪器[J].电子学报,2023,51(5):1350-1358,9.基金项目
国家重点研发计划项目(No.2021YFB2501200) (No.2021YFB2501200)
国家自然科学基金面上项目(No.52172379,No.52172324) (No.52172379,No.52172324)
陕西省重点研发计划项目(No.2021SF-483) (No.2021SF-483)
陕西省博士后科研项目(No.2018BSHYDZZ64) (No.2018BSHYDZZ64)
西安市智慧高速公路信息融合与控制重点实验室(长安大学)开放基金项目(No.300102321502) (长安大学)
中央高校基本科研业务费资助项目(No.300102240203) National Key Research and Development Program(No.2021YFB2501200) (No.300102240203)
General Program of the National Natural Science Foundation of China(No.52172379,No.52172324) (No.52172379,No.52172324)
Key Research and Development Pro-gram of Shaanxi Province(No.2021SF-483) (No.2021SF-483)
Postdoctoral Scientific Research Project of Shaanxi Province(No.2018BSHYDZZ64) (No.2018BSHYDZZ64)
Xi'an Intelligent Highway Information Fusion and Control Key Laboratory(Chang'an Univer-sity)Open Fund Project(No.300102321502) (Chang'an Univer-sity)
Central Universities Basic Research Funding Projects(No.300102240203) (No.300102240203)