南方电网技术2023,Vol.17Issue(6):62-71,10.DOI:10.13648/j.cnki.issn1674-0629.2023.06.008
季节分型下一种面向风电功率日前预测的深度自适应滤波框架
A Depth Self-Adaptive Filtering Framework for Wind Power Day-Ahead Prediction Under Seasonal Classification
摘要
关键词
相对熵/非局部均值去噪/季节分型/风电功率日前预测Key words
kullback-leibler divergence/non-local means de-noising/seasonal classification/day-ahead forecast of wind power分类
信息技术与安全科学引用本文复制引用
杨茂,闫琦,苏欣,周茉,姜林,田圃晟..季节分型下一种面向风电功率日前预测的深度自适应滤波框架[J].南方电网技术,2023,17(6):62-71,10.基金项目
国家重点研发计划资助项目(2022YFB2403000) (2022YFB2403000)
新能源与储能运行控制国家重点实验室开放基金资助项目(NBY51202201693).Supported by the National Key Research and Development Program of China(2022YFB2403000) (NBY51202201693)
the Open Fund of State Key Laboratory of Operation and Control of Renewable Energy&Storage Systems(NBY51202201693). (NBY51202201693)