沉积学报2023,Vol.41Issue(4):1138-1152,15.DOI:10.14027/j.issn.1000-0550.2021.148
基于FMI图像深度学习的砂砾岩体沉积微相识别方法——以东营凹陷北带Y920区块沙四上亚段为例
A Method for Identifying Sedimentary Microfacies in a Sandy Conglomerate Body on Deep Learning of FMI Images:Case study of upper submember of the Fourth member,Shahejie Formation in Y920 block,northern zone,Dongying Sag
摘要
关键词
FMI图像/砂砾岩体/沉积微相/东营凹陷/深度学习Key words
FMI images/sandy conglomerate bodies/sedimentary microfacies/Dongying Sag/deep learning分类
天文与地球科学引用本文复制引用
罗歆,闫建平,王军,耿斌,王敏,钟广海,张帆,李志鹏,高松洋..基于FMI图像深度学习的砂砾岩体沉积微相识别方法——以东营凹陷北带Y920区块沙四上亚段为例[J].沉积学报,2023,41(4):1138-1152,15.基金项目
国家科技重大专项(2017ZX05072-002,2017ZX05049-004) (2017ZX05072-002,2017ZX05049-004)
国家自然科学基金项目(41830431) (41830431)
中国石油—西南石油大学创新联合体科技合作项目(2020CX020000) (2020CX020000)
高等学校学科创新引智计划(111计划)(D18016)[National Science and Technology Major Project,No.2017ZX05072-002,2017ZX05049-004 (111计划)
National Natural Science Foundation of China,No.41830431 ()
Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance,No.2020CX020000 ()
111 Project,No.D18016] ()