| 注册
首页|期刊导航|物理化学学报|基于硒化镓纳米片填充的空芯光纤超高二次谐波增强

基于硒化镓纳米片填充的空芯光纤超高二次谐波增强

王晓愚 周旭 刘开辉 刘忠范 程阳 薛国栋 周子琦 赵孟泽 马超杰 谢瑾 姚光杰 洪浩

物理化学学报2023,Vol.39Issue(7):110-116,7.
物理化学学报2023,Vol.39Issue(7):110-116,7.DOI:10.3866/PKU.WHXB202212028

基于硒化镓纳米片填充的空芯光纤超高二次谐波增强

Giant Enhancement of Optical Second Harmonic Generation in Hollow-Core Fiber Integrated with GaSe Nanoflakes

王晓愚 1周旭 2刘开辉 3刘忠范 4程阳 3薛国栋 3周子琦 3赵孟泽 3马超杰 3谢瑾 1姚光杰 1洪浩3

作者信息

  • 1. 北京大学物理学院,纳米光电子前沿科学中心,介观物理国家重点实验室,北京100871||北京石墨烯研究院(BGI),北京100095
  • 2. 华南师范大学物理与通信工程学院,广东省量子工程与量子材料重点实验室,广州510006
  • 3. 北京大学物理学院,纳米光电子前沿科学中心,介观物理国家重点实验室,北京100871
  • 4. 北京石墨烯研究院(BGI),北京100095||北京大学化学与分子工程学院,纳米化学中心,北京100871
  • 折叠

摘要

Abstract

All-fiber functional devices are superior to conventional optical crystals for next-generation integrated optics owing to their natural compatibility with optical fiber systems.Nonlinear optical fiber devices play an important role in frequency conversion and optical parametric amplification.However,optical fibers are unsuitable for all-optical systems owing to the intrinsic properties of pure quartz.Optical second harmonic generation(SHG),which is significant in practical optical applications,is theoretically forbidden in traditional centrosymmetric non-crystalline fused silica fibers.Consequently,generating giant second-order optical processes in optical fibers remains challenging.Many studies have attempted to artificially break the centrosymmetry of fused silica fibers using various poling techniques,such as thermal or electric field poling,which can enhance the second-order nonlinear optical susceptibility.However,these methods require difficult and complicated fabrication processes,and the corresponding hybrid optical fibers exhibit an inefficient harmonic generation process,which greatly increases the cost and limits the development of all-fiber nonlinear functionalization.Therefore,there is an urgent need for new fabrication methods and technical means for functionalizing optical fiber devices that can improve the second-order nonlinear effect while remaining simple and practical.Herein,we propose an improved solution-filling method that can effectively deposit highly nonlinear GaSe nanoflakes directly on the inner walls of hollow-core fibers(HCF)with a length of up to half a meter.In addition,the as-fabricated hollow-core fiber integrated with GaSe nanoflakes(GaSe-HCF)is used to demonstrate that the second-order nonlinear effect of the optical fiber is enhanced by the ultrahigh nonlinear effect of the GaSe materials.Compared to previously reported MoS2-embedded hollow-core fibers(MoS2-HCF)and conventional optical fibers,the SHG of the GaSe-HCF is three and two orders of magnitude stronger than that of bare HCF and MoS2-HCF,respectively.A GaSe-HCF with a length of up to half a meter was successfully prepared using the new filling method and exhibited good expansibility.The pressure process was exploited by adding a short length of air column to effectively fill the HCF with the highly nonlinear GaSe suspension,and expand the applicability of this method.Our results will provide a novel and highly efficient strategy to manufacture nonlinear optical fibers integrated with other nanomaterials and can be used to fabricate new all-fiber devices with strongly enhanced second-order nonlinear optical processes,thus broadening nonlinear optics and optoelectronics applications.

关键词

空芯光纤/硒化镓/光学二次谐波/光频率转换器/溶液填充法/纳米材料

Key words

Hollow-core fiber/Gallium selenide/SHG/Optical frequency converter/Solution filling method/Nanomaterials

分类

化学

引用本文复制引用

王晓愚,周旭,刘开辉,刘忠范,程阳,薛国栋,周子琦,赵孟泽,马超杰,谢瑾,姚光杰,洪浩..基于硒化镓纳米片填充的空芯光纤超高二次谐波增强[J].物理化学学报,2023,39(7):110-116,7.

基金项目

The project was supported by the National Key R&D Program of China(2021YFA1400201,2021YFB3200303,2021YFA1400502,2022YFA1403504),the National Natural Science Foundation of China(52021006,52172035,92163206,52025023,12104018),the Strategic Priority Research Program of Chinese Academy of Sciences(XDB33000000),the China Postdoctoral Science Foundation(2021T140022),the Guangzhou Basic and Applied Basic Research Projects(202201010395).国家重点研发计划(2021YFA1400201,2021YFB3200303,2021YFA1400502,2022YFA1403504),国家自然科学基金(52021006,52172035,92163206,52025023,12104018),中国科学院战略重点研究计划(XDB33000000),中国博士后科学基金(2021T140022),广州市基础与应用基础研究(202201010395)资助项目 (2021YFA1400201,2021YFB3200303,2021YFA1400502,2022YFA1403504)

物理化学学报

OACSTPCD

1000-6818

访问量0
|
下载量0
段落导航相关论文