Biological Tissue-Inspired Ultrasoft,Ultrathin,and Mechanically Enhanced Microfiber Composite Hydrogel for Flexible Bioelectronics
Qiang Gao Simin Feng Xiaowei Wang Seema Agarwal Ting Zhang Fuqin Sun Yue Li Lianhui Li Mengyuan Liu Shuqi Wang Yongfeng Wang Tie Li Lin Liu
Biological Tissue-Inspired Ultrasoft,Ultrathin,and Mechanically Enhanced Microfiber Composite Hydrogel for Flexible Bioelectronics
Biological Tissue-Inspired Ultrasoft,Ultrathin,and Mechanically Enhanced Microfiber Composite Hydrogel for Flexible Bioelectronics
摘要
关键词
Fiber/Hydrogel/Flexible electronics/Thin film/ElectrospinningKey words
Fiber/Hydrogel/Flexible electronics/Thin film/Electrospinning引用本文复制引用
Qiang Gao,Simin Feng,Xiaowei Wang,Seema Agarwal,Ting Zhang,Fuqin Sun,Yue Li,Lianhui Li,Mengyuan Liu,Shuqi Wang,Yongfeng Wang,Tie Li,Lin Liu..Biological Tissue-Inspired Ultrasoft,Ultrathin,and Mechanically Enhanced Microfiber Composite Hydrogel for Flexible Bioelectronics[J].纳微快报(英文),2023,15(9):175-189,15.基金项目
The authors acknowledge the funding sup-port from the fellowship of the China Postdoctoral Science Foun-dation(2022M722329,2021M700097),the National Natural Science Foundation for Distinguished Young Scholars of China(62125112),the National Natural Science Foundation of China(62071462,62071463,62271479,22109173),and the Jiangxi Provincial Natural Science Foundation(20224ACB212001).The authors are grateful for the support from Nano-X Vacuum Intercon-nected Workstation & Key Laboratory of Multifunctional Nano-materials and Smart Systems of Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO),Chinese Academy of Sciences(CAS).Open access funding provided by Shanghai Jiao Tong University. (2022M722329,2021M700097)