高压电器2023,Vol.59Issue(9):201-210,10.DOI:10.13296/j.1001-1609.hva.2023.09.024
基于轻量级卷积神经网络的GIS绝缘和机械故障诊断方法
Insulation and Mechanical Fault Diagnosis Method for GIS Based on Lightweight Convolution Neural Network
摘要
关键词
气体绝缘金属封闭开关设备/故障诊断/轻量级卷积神经网络/迁移学习/电力物联网Key words
gas insulated metal-enclosed switchgear(GIS)/fault diagnosis/lightweight convolution neural network/transfer learning/power internet of Things引用本文复制引用
杨为,柯艳国,赵恒阳,胡迪,赵常威..基于轻量级卷积神经网络的GIS绝缘和机械故障诊断方法[J].高压电器,2023,59(9):201-210,10.基金项目
国网安徽省电力有限公司科技项目资助(52120517000D). Project Supported by Science and Technology Project of State Grid Anhui Electric Power Company(52120517000D). (52120517000D)