电源学报2023,Vol.21Issue(5):173-181,9.DOI:10.13234/j.issn.2095-2805.2023.5.173
基于Dropout优化算法和LSTM的铅酸蓄电池容量预测
Prediction of Lead-acid Battery Capacity Based on Dropout Optimization Algorithm and LSTM
摘要
关键词
长短期记忆神经网络/容量预测/铅酸蓄电池/人工智能Key words
long short-term memory(LSTM)neural network/capacity prediction/lead-acid battery/artificial intelli-gence分类
信息技术与安全科学引用本文复制引用
舒征宇,翟二杰,李镇翰,黄志鹏..基于Dropout优化算法和LSTM的铅酸蓄电池容量预测[J].电源学报,2023,21(5):173-181,9.基金项目
国家自然科学基金资助项目(61876097)Project Supported by National Natural Science Foundation of China(61876097) (61876097)