电力系统保护与控制2023,Vol.51Issue(18):81-93,13.DOI:10.19783/j.cnki.pspc.230148
基于K-Medoids聚类与栅格法提取负荷曲线特征的CNN-LSTM短期负荷预测
CNN-LSTM short-term load forecasting based on the K-Medoids clustering and grid method to extract load curve features
摘要
关键词
短期负荷预测/K-Medoids聚类分析/负荷曲线特征提取/卷积神经网络/长短期记忆网络Key words
short-term load forecasting/K-Medoids cluster analysis/load curve feature extraction/convolutional neural network/long-short term memory network引用本文复制引用
季玉琦,严亚帮,和萍,刘小梅,李从善,赵琛,范嘉乐..基于K-Medoids聚类与栅格法提取负荷曲线特征的CNN-LSTM短期负荷预测[J].电力系统保护与控制,2023,51(18):81-93,13.基金项目
This work is supported by the National Natural Science Foundation of China(No.62203401 and No.52377125). 国家自然科学基金项目资助(62203401,52377125) (No.62203401 and No.52377125)
河南省科技攻关项目资助(212102210257) (212102210257)
河南省自然科学基金项目资助(232300420315) (232300420315)