一个无需Lipschitz连续性的混合自适应共轭梯度投影法及其应用OACSTPCD
A Hybrid Self-adaptive Conjugate Gradient Projection Method Without Lipschitz Continuity and Its Applications
共轭梯度投影法是求解大规模凸约束非线性单调方程组的有效算法之一.该文基于四个经典共轭参数,采用混合策略及投影技术,提出一个有效的混合自适应共轭梯度投影法.该方法产生的搜索方向独立于任何线搜索满足充分下降性和信赖域性质.无需Lipschitz连续性假设,分析并证明新方法的全局收敛性.数值结果验证所提方法的计算有效性.最后,通过稀疏信号恢复试验,验证新方法的实用性.
The conjugate gradient projection method is an effective algorithm for solving large-scale nonlinear monotone equations with convex constraints.In this paper,based on the four classical conjugate parameters,an effective hybrid self-adaptive conjugate gradient projection method is proposed by using hybridization strategy and projection technique.The search direction satisfies the sufficient descent and trust region properties independent of any line search.Th…查看全部>>
袁梓航;王云;刘鹏杰;卓越;周金诚
中国矿业大学数学学院,江苏徐州221116中国矿业大学数学学院,江苏徐州221116中国矿业大学数学学院,江苏徐州221116||香港理工大学土木及环境工程学系,香港九龙999077中国矿业大学数学学院,江苏徐州221116中国矿业大学数学学院,江苏徐州221116
数学
非线性单调方程组共轭梯度投影法收敛性压缩感知
Nonlinear monotone equationsConjugate gradient projection methodConvergence propertyCompressed sensing
《应用数学》 2023 (4)
951-960,10
Supported by the National Natural Science Foundation of China(72071202),Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX22_2491),Graduate Innovation Program of China University of Mining and Technology(2022WLKXJ021)and Undergradu-ate Training Program for Innovation and Entrepreneurial,China University of Mining and Technology(202210290205Y)
评论