| 注册
首页|期刊导航|自动化学报(英文版)|A Data-Driven Rutting Depth Short-Time Prediction Model With Metaheuristic Optimization for Asphalt Pavements Based on RIOHTrack

A Data-Driven Rutting Depth Short-Time Prediction Model With Metaheuristic Optimization for Asphalt Pavements Based on RIOHTrack

Zhuoxuan Li Iakov Korovin Xinli Shi Sergey Gorbachev Nadezhda Gorbacheva Wei Huang Jinde Cao

自动化学报(英文版)2023,Vol.10Issue(10):1918-1932,15.
自动化学报(英文版)2023,Vol.10Issue(10):1918-1932,15.DOI:10.1109/JAS.2023.123192

A Data-Driven Rutting Depth Short-Time Prediction Model With Metaheuristic Optimization for Asphalt Pavements Based on RIOHTrack

A Data-Driven Rutting Depth Short-Time Prediction Model With Metaheuristic Optimization for Asphalt Pavements Based on RIOHTrack

Zhuoxuan Li 1Iakov Korovin 2Xinli Shi 3Sergey Gorbachev 4Nadezhda Gorbacheva 2Wei Huang 5Jinde Cao6

作者信息

  • 1. School of Mathematics,Southeast University,Nanjing 210096,China
  • 2. Scientific Research Institute of Multiprocessor Computer Systems,Southern Federal University,Taganrog 347928,Russia
  • 3. School of Cyber Science and Engineering,Southeast University,Nanjing 210096,China
  • 4. Russian Academy of Engineering,Moscow 125009,Russia
  • 5. Intelligent Transportation System Research Center,Southeast University,Nanjing 210096,China
  • 6. School of Mathematics,Southeast University,Nanjing 210096,China,Nanjing Modern Multimodal Transportation Laboratory,Nanjing 211100,China,Yonsei Frontier Laboratory,Yonsei University,Seoul,Korea(South)
  • 折叠

摘要

关键词

Extreme learning machine algorithm with residual correction(RELM)/metaheuristic optimization/oil-gas transporta-tion/RIOHTrack/rutting depth

Key words

Extreme learning machine algorithm with residual correction(RELM)/metaheuristic optimization/oil-gas transporta-tion/RIOHTrack/rutting depth

引用本文复制引用

Zhuoxuan Li,Iakov Korovin,Xinli Shi,Sergey Gorbachev,Nadezhda Gorbacheva,Wei Huang,Jinde Cao..A Data-Driven Rutting Depth Short-Time Prediction Model With Metaheuristic Optimization for Asphalt Pavements Based on RIOHTrack[J].自动化学报(英文版),2023,10(10):1918-1932,15.

基金项目

This work was supported by the Analytical Center for the Government of the Russian Federation(IGK 000000D730321P5Q0002)and Agreement Nos.(70-2021-00141). (IGK 000000D730321P5Q0002)

自动化学报(英文版)

OACSCDCSTPCDEI

2329-9266

访问量0
|
下载量0
段落导航相关论文