沉积学报2023,Vol.41Issue(5):1559-1567,9.DOI:10.14027/j.issn.1000-0550.2022.100
机器学习方法在浅层滩坝相薄储层孔隙度预测中的应用
Application of Machine Learning for Porosity Estimation of Beach and Bar Sand Bodies in a Lacustrine Basin:A case study of the Lower Cretaceous strata in Chepaizi area,Junggar Basin,NW China
摘要
关键词
机器学习/孔隙度估算/滩坝相/白垩系/车排子凸起Key words
machine learning/porosity estimation/beach and bar facies/Cretaceous/Chepaizi uplift分类
天文与地球科学引用本文复制引用
张宇航,时保宏,张曰静,石好果,文雯,张杨..机器学习方法在浅层滩坝相薄储层孔隙度预测中的应用[J].沉积学报,2023,41(5):1559-1567,9.基金项目
国家自然科学基金项目(41711530128) (41711530128)
陕西省自然科学基金项目(2021JQ-587) (2021JQ-587)
油气资源与探测国家重点实验室开放课题基金(PRP/open-1609)National Natural Science Foundation of China,No.41711530128 (PRP/open-1609)
Natural Science Foundation of Shaanxi Province,No.2021JQ-587 ()
Open Project Fund of State Key Laboratory of Petroleum Resources and Exploration,No.PRP/open-1609 ()