| 注册
首页|期刊导航|物理化学学报|TiO2负载超低含量AuPd纳米颗粒在水蒸气条件下实现稳定的光催化甲烷偶联生成乙烷

TiO2负载超低含量AuPd纳米颗粒在水蒸气条件下实现稳定的光催化甲烷偶联生成乙烷

谢君 蒋雨恒 李思扬 徐鹏 郑强 范晓宇 彭海琳 唐智勇

物理化学学报2023,Vol.39Issue(10):4-13,10.
物理化学学报2023,Vol.39Issue(10):4-13,10.DOI:10.3866/PKU.WHXB202306037

TiO2负载超低含量AuPd纳米颗粒在水蒸气条件下实现稳定的光催化甲烷偶联生成乙烷

Stable Photocatalytic Coupling of Methane to Ethane with Water Vapor Using TiO2 Supported Ultralow Loading AuPd Nanoparticles

谢君 1蒋雨恒 2李思扬 1徐鹏 3郑强 3范晓宇 4彭海琳 5唐智勇1

作者信息

  • 1. 中国科学院纳米系统与多级次制造重点实验室,中国科学院卓越纳米科学中心,国家纳米科学中心,北京100190||中国科学院大学,北京100049
  • 2. 中国科学院纳米系统与多级次制造重点实验室,中国科学院卓越纳米科学中心,国家纳米科学中心,北京100190||中国科学院大学,北京100049||北京大学前沿交叉学科研究院,北京100871
  • 3. 中国科学院纳米标准与检测重点实验室,北京100190
  • 4. 中国科学院纳米系统与多级次制造重点实验室,中国科学院卓越纳米科学中心,国家纳米科学中心,北京100190
  • 5. 北京大学前沿交叉学科研究院,北京100871||北京大学化学与分子工程学院,北京分子科学国家研究中心,北京纳米碳科学与工程中心,纳米化学中心,北京100871
  • 折叠

摘要

Abstract

The selective conversion of methane to C2 hydrocarbons offers a sustainable approach to utilize natural gas efficiently and reduce reliance on conventional fossil fuels.Unlike the conventional thermal catalytic conversion that requires high temperatures and pressures,the photocatalytic pathway enables methane activation and selective conversion under mild conditions,holding great promise as a sustainable method.However,achieving the efficient generation of C2 compounds under flowing conditions using cost-effective photocatalysts remains great challenge.In this work,we synthesized an ultralow loading AuPd alloy nanoparticle-supported on TiO2(AAu0.05-Pd0.05/TiO2)photocatalyst via simple chemical reduction.Characterization using X-ray diffraction(XRD),aberration corrected high-angle annular dark field scanning transmission electron microscopy(AC-HAADF-STEM)and in situ CO-diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)confirmed its composition and structure.The performance of the Au0.05-Pd0.05/TiO2 photocatalyst in methane conversion was evaluated under flow-reaction conditions.Remarkably,the photocatalyst efficiently converted methane containing water vapor into C2 compounds,including ethane and ethylene,with a remarkable C2 production rate of up to 10092 μmol g-1·h-1 and a selectivity of 77%.While water vapor was not essential for methane conversion,its presence enhanced the production of ethane and ethylene while suppressing overoxidation to CO2.The photocatalyst demonstrated excellent stability,maintaining its catalytic activity even after continuous reaction for 32 h,surpassing previously reported results.With the assistant of transient photocurrent response test,in situ X-ray photoelectron spectroscopy spectra and in situ DRIFTS,we uncovered that the exceptional catalytic activity of Au0.05-Pd0.05/TiO2 originates from the synergistic effect of Au and Pd,which promotes the separation of photogenerated carriers and facilitates the C—C bond coupling of CH3 to produce C2 compounds.Furthermore,XPS characterization revealed that the introduction of water vapor replenished consumed lattice oxygen during the methane activation process,thus contributing to the catalyst's stability.This study not only offers a cost-effective and efficient photocatalyst for methane conversion but also provides insights into the fundamental mechanism of photocatalytic methane conversion.We believe that our work will inspire the exploration of inexpensive catalysts with simple preparation methods,driving advancements in efficient methane to C2 compound conversion and contributing to sustainable photocatalytic pathways for the future.

关键词

光催化/甲烷/流动反应/水蒸气/AuPd合金纳米颗粒/C2化合物

Key words

Photocatalysis/Methane/Flow-reaction/Water vapor/AuPd alloy nanoparticle/C2 compounds

分类

化学

引用本文复制引用

谢君,蒋雨恒,李思扬,徐鹏,郑强,范晓宇,彭海琳,唐智勇..TiO2负载超低含量AuPd纳米颗粒在水蒸气条件下实现稳定的光催化甲烷偶联生成乙烷[J].物理化学学报,2023,39(10):4-13,10.

基金项目

The project was supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDB36000000),National Key Basic Research Program of China(2021YFA1200302),and National Natural Science Foundation of China(92056204,21890381,21721002).中国科学院战略性先导科技专项(XDB36000000),国家重点基础研究计划(2021YFA1200302)及国家自然科学基金(92056204,21890381,21721002)资助项目 (XDB36000000)

物理化学学报

OACSCDCSTPCD

1000-6818

访问量0
|
下载量0
段落导航相关论文