| 注册
首页|期刊导航|物理学进展|向列型三态超导体中的磁通涡旋态

向列型三态超导体中的磁通涡旋态

杨苗苗 向柯 王达 王强华

物理学进展2023,Vol.43Issue(5):131-141,11.
物理学进展2023,Vol.43Issue(5):131-141,11.DOI:10.13725/j.cnki.pip.2023.05.001

向列型三态超导体中的磁通涡旋态

Vortex State in a Nematic Triplet Superconductor

杨苗苗 1向柯 1王达 2王强华2

作者信息

  • 1. 南京大学物理学院,固体微结构物理国家重点实验室,南京 210093
  • 2. 南京大学物理学院,固体微结构物理国家重点实验室,南京 210093||人工微结构科学与技术协同创新中心,南京大学,南京 210093
  • 折叠

摘要

Abstract

The discovery of nematic triplet superconductivity in doped topological insulators CuxBi2Se3 triggers interest in the identification of the d-vector of the triplet,which is related to the antinodal direction of the gap function and determines whether the superconductor is topological.We perform self-consistent analysis of the vortex state properties in a nematic spin-triplet px-wave superconductor.We first derive a Ginzburg-Landau theory to determine the shape of the vortex and vortex lattice.We find the spatial profile of the isolated vortex is elongated along the antinodal direction,and the vortex lattice is a distorted triangular lattice elongated along x,becoming square in the specific case of a small circular Fermi surface.Finally,we calculate the local density of states self-consistently for an isolated vortex and the vortex lattice using the microscopic Bogoliubov-de Gennes equation.We find that the profile of the local density of states at low in-gap energies is always elongated along the antinodal direction.Our findings are valuable for the experimental detection of the antinodal direction of the gap function in nematic triplet superconductors,and subsequently the identification of the topological character of the superconducting state as in CuxBi2Se3.

关键词

px波超导体/Ginzburg-Landau理论/Bogoliubov-de Gennes方程/磁通涡旋/磁通涡旋晶格

Key words

px-wave superconductivity/Ginzburg-Landau theory/Bogoliubov-de Gennes equation/vortex/vortex lattice

分类

物理学

引用本文复制引用

杨苗苗,向柯,王达,王强华..向列型三态超导体中的磁通涡旋态[J].物理学进展,2023,43(5):131-141,11.

基金项目

This work is supported by National Key R&D Program of China(Grant No.2022YFA1403201)and National Natural Science Foundation of China(Grant No.12274205 and No.11874205). (Grant No.2022YFA1403201)

物理学进展

1000-0542

访问量0
|
下载量0
段落导航相关论文