首页|期刊导航|电力系统及其自动化学报|基于时间模式注意力机制的GRU短期负荷预测

基于时间模式注意力机制的GRU短期负荷预测OACSCDCSTPCD

Short-term Load Prediction of GRU Neural Network Based on Temporal Pattern Attention Mechanism

中文摘要

针对新能源时代负荷数据随机性更强及负荷预测误差较大的问题,提出一种基于时间模式注意力机制的门控循环单元神经网络短期负荷预测方法.首先,采用自适应白噪声的完整经验模态分解对负荷数据进行处理,得到若干个频率范围不同的本征模函数.其次,通过最大互信息系数进行相关性分析筛选特征,优化输入数据的特征维度.然后,构建基于时间模式注意力机制的门控循环单元神经网络预测模型进行负荷预测,采用自回归算法优化线性特征提取能力,得到预测结果.最后,通过实例分析证明了所提…查看全部>>

乔石;王磊;张鹏超;闫群民;余帆

陕西理工大学电气工程学院,汉中 723001||陕西理工大学工业自动化重点实验室,汉中 723001陕西理工大学工业自动化重点实验室,汉中 723001陕西理工大学工业自动化重点实验室,汉中 723001陕西理工大学电气工程学院,汉中 723001陕西理工大学电气工程学院,汉中 723001

动力与电气工程

短期负荷预测最大互信息系数自适应白噪声的完整经验模态分解TPA-GRU神经网络

short-term load predictionmaximal mutual information coefficient(MIC)complete ensemble empirical mode decomposition with adaptive white noise(CEEMDAN)gated recurrent unit neural network based on temporal pattern attention(TPA-GRU)

《电力系统及其自动化学报》 2023 (10)

49-58,10

国家自然科学基金一般面上资助项目(62176146)陕西省自然科学基础研究计划重点资助项目(2019JZ-11)

10.19635/j.cnki.csu-epsa.001179

评论

您当前未登录!去登录点击加载更多...