首页|期刊导航|电子学报|基于跨域结构保持投影的异构在线多源迁移学习方法

基于跨域结构保持投影的异构在线多源迁移学习方法OACSCD

Heterogeneous Online Multi-Source Transfer Learning with Cross-Domain Structure Preserving Projection

中文摘要

异构在线迁移学习使用异构源域的离线数据弥补目标域在线学习数据不足,从而提高目标域在线学习性能.现有方法通常假定源域是目标域特征空间子集或依赖特定的辅助数据.本文提出一种基于跨域结构保持投影的异构在线多源迁移学习方法.通过跨域结构保持投影,同时将每个源域与目标域的特征空间映射到公共子空间,并基于公共子空间中的跨域离线混合数据和目标域在线数据分别进行离线学习和在线学习,提出采用一种双层差异导向对冲集成策略,实现源域离线学习模型与目标域在线学习模型的两层集成融合和在线演化更新.基于本文方法设计实现了一种异构在线多源迁移多分类算法,且理论分析了该算法的分类错误上界.实验结果表明,本文方法能有效实现异构在线多源迁移学习并降低目标域在线多分类错误率,且优于同类的在线多源迁移学习方法.

蒋晓玲;吴映波;陈蒙;瞿祥谋

重庆大学大数据与软件学院,重庆 400000重庆大学大数据与软件学院,重庆 400000重庆大学大数据与软件学院,重庆 400000重庆大学大数据与软件学院,重庆 400000

计算机与自动化

异构迁移学习在线学习跨域结构保持投影特征空间多分类

heterogeneous transfer learningonline learningcross-domain structure preserving projectionfeature spacemulti-class classification

《电子学报》 2023 (8)

1983-1994,12

国家重点研发计划(No.2019YFB1706101)重庆市技术创新与应用发展专项重点项目(No.cstc2019jscx-mbdxX0047)中央高校基本业务费项目(No.2020CDCGRJ50) National Key Research and Development Program of China(No.2019YFB1706101)Special Key Project for Technological Innovation and Application Development in Chongqing(No.cstc2019jscx-mbdxX0047)Central University Basic Business Fee Project(No.2020CDCGRJ50)

10.12263/DZXB.20210935

评论