| 注册
首页|期刊导航|吉首大学学报(自然科学版)|一种基于μ-S模型的最佳滑移率辨识估计器设计

一种基于μ-S模型的最佳滑移率辨识估计器设计

王波 丁芳 刘明岩 田苗法

吉首大学学报(自然科学版)2023,Vol.44Issue(5):48-56,9.
吉首大学学报(自然科学版)2023,Vol.44Issue(5):48-56,9.DOI:10.13438/j.cnki.jdzk.2023.05.007

一种基于μ-S模型的最佳滑移率辨识估计器设计

Optimal Slip Ratio Identification Estimator Design Based on μ-S Model

王波 1丁芳 1刘明岩 1田苗法1

作者信息

  • 1. 安徽机电职业技术学院汽车与轨道学院,安徽芜湖 241002
  • 折叠

摘要

Abstract

In order to achieve optimal control of the automotive anti-lock controller based on slip ratio identification,an optimal slip ratio identification estimator is designed based on the Kiencke μ-S model using an improved forgetting factor recursive least squares algorithm,and the estimation results of the identification estimator regarding the optimal slip ratio and peak adhesion coefficient are compared with those under the Burckhardt μ-S model.The discriminative estimator is applied to the fuzzy sliding mode controller of the automotive anti-lock braking system,and simulation experiments are conducted under single pavement and variational pavement conditions.The experimental results show that the discrimina-tive estimator has small errors and delays,and the anti-lock controller based on the optimal slip ratio identification can achieve online identification and fast tracking of the optimal slip ratio and effectively improve the braking efficiency.

关键词

最佳滑移率/辨识估计器/Kiencke μ-S模型/递推最小二乘法/遗忘因子

Key words

optimal slip ratio/identification estimator/Kiencke μ-S model/recursive least square method/forgetting factor

分类

交通工程

引用本文复制引用

王波,丁芳,刘明岩,田苗法..一种基于μ-S模型的最佳滑移率辨识估计器设计[J].吉首大学学报(自然科学版),2023,44(5):48-56,9.

基金项目

安徽省高校科学研究项目(KJ2020A1101,KJ2020A1116,2022AH052354) (KJ2020A1101,KJ2020A1116,2022AH052354)

安徽省质量工程项目(2021JXTD064) (2021JXTD064)

吉首大学学报(自然科学版)

1007-2985

访问量0
|
下载量0
段落导航相关论文