| 注册
首页|期刊导航|计算机工程|基于结构方程似然框架的缺失值因果学习算法

基于结构方程似然框架的缺失值因果学习算法

郝志峰 喻建华 乔杰 蔡瑞初

计算机工程2023,Vol.49Issue(12):63-70,8.
计算机工程2023,Vol.49Issue(12):63-70,8.DOI:10.19678/j.issn.1000-3428.0066474

基于结构方程似然框架的缺失值因果学习算法

Missing Value Causal Learning Algorithm Based on Structural Equation Likelihood Framework

郝志峰 1喻建华 2乔杰 2蔡瑞初2

作者信息

  • 1. 广东工业大学 计算机学院,广州 510006||汕头大学 理学院,广东 汕头 515063
  • 2. 广东工业大学 计算机学院,广州 510006
  • 折叠

摘要

Abstract

Exploring causal relationships between entities is crucial in data science.In practical scenarios missing values pose significant challenges to both constraint-based and structural equation model-based methods.Although existing causal learning methods effectively address random missing data,discerning causal structures in non-random missing data remains problematic.Challenges include learning causal pairs,identifying Markov equivalence class structures,and correcting causal direction errors in causal structure networks.To tackle these issues,this paper introduces a novel algorithm,MV-SELF,based on the structural equation likelihood framework.This algorithm transforms the conditional probability distribution of a nonlinear Additive Noise Model(ANM)into a representation of noise distribution.Consequently,it enables a maximum likelihood-based scoring mechanism for causal structure search.Additionally,MV-SELF utilizes Inverse Probability Weight(IPW)correction to counteract non-random deletions.This approach effectively restores the joint distribution of missing data,thereby correcting redundant edges and inaccurate causal directions.It facilitates high-dimensional causal structure searches in datasets with missing values.Simulation experiments reveal that MV-SELF outperforms TD-PC,MVPC,and Structure EM algorithms,achieving a 3%to 19%increase in F1 value.This improvement highlights MV-SELF's effectiveness in distinguishing Markov equivalence classes.

关键词

结构方程似然框架/缺失数据/逆概率加权/因果方向学习/加性噪声模型

Key words

structural equation likelihood framework/missing datas/Inverse Probability Weight(IPW)/causal discovery learning/Additive Noise Model(ANM)

分类

信息技术与安全科学

引用本文复制引用

郝志峰,喻建华,乔杰,蔡瑞初..基于结构方程似然框架的缺失值因果学习算法[J].计算机工程,2023,49(12):63-70,8.

基金项目

国家自然科学基金(61876043,61976052,62206064) (61876043,61976052,62206064)

国家优秀青年科学基金(62122022) (62122022)

科技创新2030—"新一代人工智能"重大项目(2021ZD0111501). (2021ZD0111501)

计算机工程

OA北大核心CSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文