| 注册
首页|期刊导航|光学精密工程|基于Swin Transformer轻量化的TFT-LCD面板缺陷分类算法

基于Swin Transformer轻量化的TFT-LCD面板缺陷分类算法

夏衍 罗晨 周怡君 贾磊

光学精密工程2023,Vol.31Issue(22):3357-3370,14.
光学精密工程2023,Vol.31Issue(22):3357-3370,14.DOI:10.37188/OPE.20233122.3357

基于Swin Transformer轻量化的TFT-LCD面板缺陷分类算法

A lightweight deep learning model for TFT-LCD circuits defect classification based on swin transformer

夏衍 1罗晨 1周怡君 1贾磊2

作者信息

  • 1. 东南大学 机械工程学院,江苏 南京 211189
  • 2. 无锡尚实电子科技有限公司,江苏 无锡 214174
  • 折叠

摘要

Abstract

Defect detection in thin film transistor-liquid crystal display(TFT-LCD)circuits is a challeng-ing task because of the complex background setting,different types of defects involved,and real-time de-tection requirements from industry.Traditional methods have difficulties in satisfying the dual require-ments of detection speed and accuracy.To address this challenge,in this study,a deep learning method is developed for image classification based on the Swin Transformer technique.First,token merging is used to reduce the computational complexity of each layer of the model,thus improving computation efficiency.Then,a depthwise separable convolution module is introduced to add convolutional bias to reduce the reli-ance on massive data.Finally,a knowledge distillation method is applied to overcome the problem of re-duced detection accuracy caused by the less-intensive computation design.Experimental results on the self-made dataset demonstrate that the proposed method achieves a 2.6 G FLOPs reduction and a 17%speed improvement compared to baseline models,with only a 1.3%Top-1 accuracy precision reduction.More importantly,the proposed model achieves better balance on accuracy and detection speed on both self-made and public datasets than existing mainstream models on image classification in the TFT-LCD manu-facturing industry.

关键词

TFT-LCD/Transformer/图像分类/计算机视觉

Key words

Thin Film Transistor Liquid Crystal Display(TFT-LCD)/transformer/image classifica-tion/computer vision

分类

信息技术与安全科学

引用本文复制引用

夏衍,罗晨,周怡君,贾磊..基于Swin Transformer轻量化的TFT-LCD面板缺陷分类算法[J].光学精密工程,2023,31(22):3357-3370,14.

基金项目

国家自然科学基金资助项目(No.51975119) (No.51975119)

无锡市"太湖之光"科技攻关(产业前瞻及关键技术研发)项目资助(No.G20222011) (产业前瞻及关键技术研发)

光学精密工程

OA北大核心CSCDCSTPCD

1004-924X

访问量0
|
下载量0
段落导航相关论文