| 注册
首页|期刊导航|高压电器|基于CEEMDAN-SG-BiLSTM的变压器油中溶解气体体积分数预测

基于CEEMDAN-SG-BiLSTM的变压器油中溶解气体体积分数预测

陈铁 陈一夫 李咸善 陈卫东 冷昊伟 陈忠

高压电器2023,Vol.59Issue(12):168-175,8.
高压电器2023,Vol.59Issue(12):168-175,8.DOI:10.13296/j.1001-1609.hva.2023.12.020

基于CEEMDAN-SG-BiLSTM的变压器油中溶解气体体积分数预测

Prediction for Dissolved Gas Concentration in Power Transformer Oil Based on CEEMDAN-SG-BiLSTM

陈铁 1陈一夫 1李咸善 1陈卫东 1冷昊伟 1陈忠2

作者信息

  • 1. 三峡大学电气与新能源学院,湖北宜昌 443002||三峡大学梯级水电站运行与控制湖北省重点实验室,湖北宜昌 443002
  • 2. 宜昌电力勘测设计院有限公司,湖北宜昌 443000
  • 折叠

摘要

Abstract

The dissolved gas concentration in transformer oil can provide an important evidence for potential fault di-agnosis of transformer.For predicting the dissolved gas concentration in transformer oil more accurately,a combined prediction method of CEEMDAN and BiLSTM network is proposed.Firstly,for the issue of modal aliasing in EMD and lager reconstruction error in EEMD,the CEEMDAN is proposed.The gas sequences are decomposed to get the modal component and the high frequency fluctuation component is subjected to Savitzky-Golay(SG)filtering to weak-en the extreme value point of high frequency component and the noise interference.Then,the BiLSTM network is used to predict each component to improve the global feature extraction further.Finally,the prediction value of dis-solved gas concentration in the transformer oil is obtained by superposition and reconstruction of the prediction re-sults of each component.It is confirmed by the calculation that,compared with other modules,the proposed method is more accurate and its effectiveness is verified.

关键词

变压器/油中溶解气体/添加自适应白噪声完全集合经验模态分解/Savitzky-Golay滤波/双向长短期记忆网络

Key words

transformer/dissolved gas in oil/complete ensemble empirical mode decomposition with adaptive noise/Savitzky-Golay filter wave/bi-directional long short-term memory network

引用本文复制引用

陈铁,陈一夫,李咸善,陈卫东,冷昊伟,陈忠..基于CEEMDAN-SG-BiLSTM的变压器油中溶解气体体积分数预测[J].高压电器,2023,59(12):168-175,8.

基金项目

国家自然科学基金资助项目(51741907) (51741907)

梯级水电站运行与控制湖北省重点实验室开放基金(2019KJX08).Project Supported by National Natural Science Foundation of China(51741907),Open Fund of Key Laboratory for Operation and Control of Cascaded Hydropower Station in Hubei Province,China(2019KJX08). (2019KJX08)

高压电器

OA北大核心CSCDCSTPCD

1001-1609

访问量0
|
下载量0
段落导航相关论文