| 注册
首页|期刊导航|高压电器|一种基于SVM算法的电力变压器机械故障智能诊断模型

一种基于SVM算法的电力变压器机械故障智能诊断模型

臧春艳 曾军 李鹏 刘宏亮 张仲程 孙路 刘耀云

高压电器2023,Vol.59Issue(12):216-222,229,8.
高压电器2023,Vol.59Issue(12):216-222,229,8.DOI:10.13296/j.1001-1609.hva.2023.12.026

一种基于SVM算法的电力变压器机械故障智能诊断模型

Intelligent Diagnosis Model of Mechanical Fault for Power Transformer Based on SVM Algorithm

臧春艳 1曾军 2李鹏 3刘宏亮 2张仲程 1孙路 2刘耀云1

作者信息

  • 1. 华中科技大学电气与电子工程学院,武汉 430074
  • 2. 国网河北省电力有限公司,石家庄 050021
  • 3. 中国电力科学研究院有限公司,北京 100192
  • 折叠

摘要

Abstract

Vibration analysis method is a non-electric diagnostic method for mechanical fault of transformer.The method can diagnose such faults as winding deformation or core looseness inside the transformer by analyzing vibra-tion characteristic of the surface of transformer oil tank.SVM,as a new machine learning method,can train and ob-tain a classification model with strong generalization ability under the condition of small samples.Based on the vibra-tion signal and SVM algorithm,an intelligent diagnosis model of transformer is constructed.The SVM training data set is constructed on the basis of collection of hundreds of groups of vibration signal data trial transformer and spec-trum feature extraction.The one classυ-SVM fault diagnosis model is trained and good results are achieved.The effec-tiveness of the model is verified,which can provide some references for the related researchers.

关键词

电力变压器/振动信号/支持向量机/智能故障诊断

Key words

power transformer/vibration signal/support vector machine/intelligent fault diagnosis

引用本文复制引用

臧春艳,曾军,李鹏,刘宏亮,张仲程,孙路,刘耀云..一种基于SVM算法的电力变压器机械故障智能诊断模型[J].高压电器,2023,59(12):216-222,229,8.

基金项目

国家电网公司2020年总部第三批科技项目(变压器热老化对绕组振动特性的影响及其抗短路能力评估策略研究).Project Supported by the 2020 Third Batch of Technology Projects of State Grid Corporation of China(Research on the Impact of Transformer Thermal Aging on Winding Vibration Characteristics and the Evaluation Strategy of Short Circuit Resistance). (变压器热老化对绕组振动特性的影响及其抗短路能力评估策略研究)

高压电器

OA北大核心CSCDCSTPCD

1001-1609

访问量0
|
下载量0
段落导航相关论文