| 注册
首页|期刊导航|计算机工程与应用|基于3D特征动态融合的点云特征提取网络

基于3D特征动态融合的点云特征提取网络

孙刘杰 翟仁杰 王文举 庞茂然

计算机工程与应用2023,Vol.59Issue(24):209-215,7.
计算机工程与应用2023,Vol.59Issue(24):209-215,7.DOI:10.3778/j.issn.1002-8331.2209-0004

基于3D特征动态融合的点云特征提取网络

Point Cloud Feature Extraction Network Based on 3D Feature Dynamic Fusion

孙刘杰 1翟仁杰 1王文举 1庞茂然1

作者信息

  • 1. 上海理工大学 出版印刷与艺术设计学院,上海 200093
  • 折叠

摘要

Abstract

To solve the problem that the feature extraction methods currently used for point cloud registration do not ade-quately extract effective information from point cloud,a point cloud feature extraction network DFRUNet(3D feature dynamic fusion and residual u-net)based on 3D feature dynamic fusion is proposed.The network dynamically fuses the features of encoding and decoding modules through 3DFDF(3D feature dynamic fusion)module to extract sufficient information from the point cloud.Meanwhile,the SE-Res(squeeze and excitation residual)module is used to extract point cloud features.By dynamically adjusting the weights of significant areas,the area features are extracted to improve the quality of the extracted features.Secondly,map the features extracted from the network into high-dimensional space,and complete point cloud registration using RANSAC(random sample consensus)algorithm.The experimental results show that on the 3DMatch dataset,the FMR(feature-match recall)of the algorithm is 96.3%,which is 0.011 higher than that of the classical FCGF algorithm.The registration recall rate is 82.2%and increased by 0.014.This method fully extracts the effective information from point clouds and achieves a higher recall rate,which has reference value for other point cloud registration studies.

关键词

特征提取/点云配准/特征动态融合/深度学习

Key words

feature extraction/point cloud registration/feature dynamic fusion/deep learning

分类

计算机与自动化

引用本文复制引用

孙刘杰,翟仁杰,王文举,庞茂然..基于3D特征动态融合的点云特征提取网络[J].计算机工程与应用,2023,59(24):209-215,7.

基金项目

上海市科学技术委员会科研计划项目(18060502500) (18060502500)

上海市自然科学基金面上项目(19ZR1435900). (19ZR1435900)

计算机工程与应用

OACSCD

1002-8331

访问量6
|
下载量0
段落导航相关论文