| 注册
首页|期刊导航|中国石油大学学报(自然科学版)|深度学习与Eaton法联合驱动的地层孔隙压力预测方法

深度学习与Eaton法联合驱动的地层孔隙压力预测方法

许玉强 何保伦 王䶮舒 韩超 肖凡 管志川 刘宽

中国石油大学学报(自然科学版)2023,Vol.47Issue(6):50-59,10.
中国石油大学学报(自然科学版)2023,Vol.47Issue(6):50-59,10.DOI:10.3969/j.issn.1673-5005.2023.06.006

深度学习与Eaton法联合驱动的地层孔隙压力预测方法

A novel prediction method of formation pore pressure driven by deep learning and Eaton method

许玉强 1何保伦 1王䶮舒 2韩超 2肖凡 3管志川 1刘宽1

作者信息

  • 1. 深层油气全国重点实验室(中国石油大学(华东)),山东青岛 266580||山东省深地钻井过程控制工程技术研究中心,山东青岛 266580
  • 2. 中石化经纬有限公司,山东青岛 266000
  • 3. 中国石油西南油气田公司开发事业部,四川成都 610000
  • 折叠

摘要

Abstract

The accurate prediction of formation pore pressure in deep complex formations has been one of the challenges in drilling engineering.In this paper,the limitations of the traditional Eaton methods and the shortcomings of the existing data-driven methods were discussed,and a convolutional neural network(CNN)and short-term memory network(LSTM)combi-nation model was constructed to fully explore the complex nonlinear relationship between drilling and recorded multi-source data and Eaton index by constructing an extension method for measuring formation pressure points.Based on the limited for-mation pressure data measured in drilled formations,a precise prediction of the Eaton index of the entire well can be a-chieved,which can provide an effective means for accurate prediction of the formation pore pressure in new wells with few measured points and uneven distribution of formation pressure.Field case studies show that the average relative error of the method established for predicting pore pressure in deep complex formations is 2.70%,while the average relative error of the traditional Eaton and LSTM methods is 7.60%and 5.12%,respectively.The combination model of deep learning with Eaton method,not only can improve the prediction accuracy of deep complex formation pore pressure,but it can also integrate multi-source data response features into the traditional methods,providing a theoretical support for the data-driven methods.

关键词

Eaton法/数据驱动/深度学习/地层孔隙压力

Key words

Eaton method/data-driven/deep learning/formation pore pressure

分类

能源科技

引用本文复制引用

许玉强,何保伦,王䶮舒,韩超,肖凡,管志川,刘宽..深度学习与Eaton法联合驱动的地层孔隙压力预测方法[J].中国石油大学学报(自然科学版),2023,47(6):50-59,10.

基金项目

国家自然科学基金面上项目(52074326) (52074326)

山东省优秀青年科学基金项目(ZR2023YQ045) (ZR2023YQ045)

中国石油大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1673-5005

访问量0
|
下载量0
段落导航相关论文