| 注册
首页|期刊导航|统计与决策|基于LHD与GPR的机器学习超参数建模及优化

基于LHD与GPR的机器学习超参数建模及优化

王方成 刘玉敏 崔庆安

统计与决策2023,Vol.39Issue(23):22-27,6.
统计与决策2023,Vol.39Issue(23):22-27,6.DOI:10.13546/j.cnki.tjyjc.2023.23.004

基于LHD与GPR的机器学习超参数建模及优化

Machine Learning Hyperparameter Modeling and Optimization Based on LHD and GPR

王方成 1刘玉敏 1崔庆安2

作者信息

  • 1. 郑州大学 商学院,郑州 450001
  • 2. 郑州大学 商学院,郑州 450001||上海海事大学 经济管理学院,上海 201306
  • 折叠

摘要

Abstract

For the nonlinear,high-order interaction and complex constraints between machine learning hyperparameters and algorithm performance,this paper proposes a modeling and optimization approach based on Gaussian process regression and ge-netic algorithm.The Latin hypercube sampling is used to take points in the hyperparameter feasible region,the Gaussian process regression model between the hyperparameter and the algorithm performance is established,and the genetic algorithm is utilized to optimize the established model.The simulation study shows that this method can better fit the complex relationship between hyper-parameters and algorithm performance in the hyperparameter feasible region.Compared with the traditional response surface method,the proposed method can achieve global optimization with fewer experiments in the hyperparameter feasible region,there-by effectively improving the efficiency and accuracy of optimization.

关键词

超参数优化/机器学习/超拉丁方设计/高斯过程回归/遗传算法

Key words

hyperparameter optimization/machine learning/Latin hypercube design/Gaussian process regression/genetic algorithm

分类

信息技术与安全科学

引用本文复制引用

王方成,刘玉敏,崔庆安..基于LHD与GPR的机器学习超参数建模及优化[J].统计与决策,2023,39(23):22-27,6.

基金项目

国家自然科学基金资助项目(U1904211 ()

71672182 ()

71571168) ()

国家社会科学基金资助项目(20BTJ059) (20BTJ059)

统计与决策

OA北大核心CHSSCDCSSCICSTPCD

1002-6487

访问量0
|
下载量0
段落导航相关论文