| 注册
首页|期刊导航|统计与决策|基于LSTM的政策效应预测模型及其应用

基于LSTM的政策效应预测模型及其应用

李树娴 张晓骏 胡成雨

统计与决策2023,Vol.39Issue(23):34-39,6.
统计与决策2023,Vol.39Issue(23):34-39,6.DOI:10.13546/j.cnki.tjyjc.2023.23.006

基于LSTM的政策效应预测模型及其应用

LSTM-based Policy Effect Prediction Model and Its Application

李树娴 1张晓骏 1胡成雨2

作者信息

  • 1. 武汉工商学院 经济与外语学院,武汉 430065
  • 2. 中南财经政法大学 统计与数学学院,武汉 430073
  • 折叠

摘要

Abstract

This paper proposes a policy evaluation method based on Long Short-Term Memory(LSTM)neural network,which combines deep learning techniques and counterfactual inference prediction.First,the LSTM method is used to fit the complex re-lationship between the group variables before the policy intervention,and then the counterfactual inference results of the group variables after the policy intervention are predicted.On this basis,the average treatment effect of the policy program is measured.Finally,the model error effect is eliminated and the economic effect of the policy scheme is evaluated.Taking the preferential loan interest rate policy of import and export of Hubei Province as an example,the paper estimates the macroeconomic benefits brought by the preferential loan policy.The results show that the LSTM-based method is superior to SCM-LASSO and ANN artificial neu-ral network in forecasting accuracy,and that the correction of model error effect can significantly improve the evaluation accuracy of policy effect.

关键词

政策效应评估/长短期记忆神经网络/优惠贷款利率/误差效应

Key words

policy effect assessment/LSTM neural network/preferential loan interest rate/error effect

分类

管理科学

引用本文复制引用

李树娴,张晓骏,胡成雨..基于LSTM的政策效应预测模型及其应用[J].统计与决策,2023,39(23):34-39,6.

基金项目

国家自然科学基金资助项目(71974204) (71974204)

教育部人文社会科学研究基金项目(22YJAZH038) (22YJAZH038)

科技大数据湖北省重点实验室开放基金资助项目(E3KF291001) (E3KF291001)

统计与决策

OA北大核心CHSSCDCSSCICSTPCD

1002-6487

访问量0
|
下载量0
段落导航相关论文