| 注册
首页|期刊导航|统计与决策|融合类信息的函数型矩阵填充方法与应用

融合类信息的函数型矩阵填充方法与应用

高海燕 马文娟 薛娇

统计与决策2023,Vol.39Issue(23):40-45,6.
统计与决策2023,Vol.39Issue(23):40-45,6.DOI:10.13546/j.cnki.tjyjc.2023.23.007

融合类信息的函数型矩阵填充方法与应用

Functional Matrix Completion Method With Class Information and Its Application

高海燕 1马文娟 2薛娇2

作者信息

  • 1. 兰州财经大学 统计与数据科学学院||甘肃省数字经济与社会计算科学重点实验室,兰州 730020
  • 2. 兰州财经大学 统计与数据科学学院
  • 折叠

摘要

Abstract

The complete acquisition of real-time vehicle flow,average lane occupancy and other traffic monitoring data is an important basis for the construction of intelligent transportation systems and the improvement of traffic management efficiency.This paper proposes a Functional Matrix Completion Method with Class Information(CFMC).In the framework of functional data analysis,a functional matrix completion model is constructed based on nonnegative matrix factorization.On this basis,the sample class information is introduced by clustering division;the missing values is imputed by intra-class sample correlation,and the fi-nal imputation values is calculated by dynamic weight reweighting based on self-weighted ensemble learning algorithm.The impu-tation experiment is carried out on the public transport data set PeMS,and the results show that when the missing rate is 15%~70%,compared with K-nearest neighbor algorithm,MICE,PACE and other 10 imputation methods,the root mean square error(RMSE),mean absolute error(MAE)and mean absolute percentage error(MAPE)of CFMC method are reduced by 10.75%~81.69%,0.34%~84.48%and 12.5%~81.08%,respectively,with the time consumption controllable.The proposed CFMC method has high imputation precision,greatly robustness,able to guarantee the effectiveness and accuracy of imputation.

关键词

函数型数据分析/非负矩阵分解/矩阵填充/交通流量/缺失插补

Key words

functional data analysis/nonnegative matrix factorization/matrix completion/traffic flow/missing imputation

分类

数理科学

引用本文复制引用

高海燕,马文娟,薛娇..融合类信息的函数型矩阵填充方法与应用[J].统计与决策,2023,39(23):40-45,6.

基金项目

国家社会科学基金资助项目(19XTJ002) (19XTJ002)

甘肃省自然科学基金资助项目(23JRRA1186) (23JRRA1186)

甘肃省优秀研究生"创新之星"项目(2023CXZX-703) (2023CXZX-703)

兰州财经大学科研项目(Lzufe2023C-005) (Lzufe2023C-005)

统计与决策

OA北大核心CHSSCDCSSCICSTPCD

1002-6487

访问量0
|
下载量0
段落导航相关论文